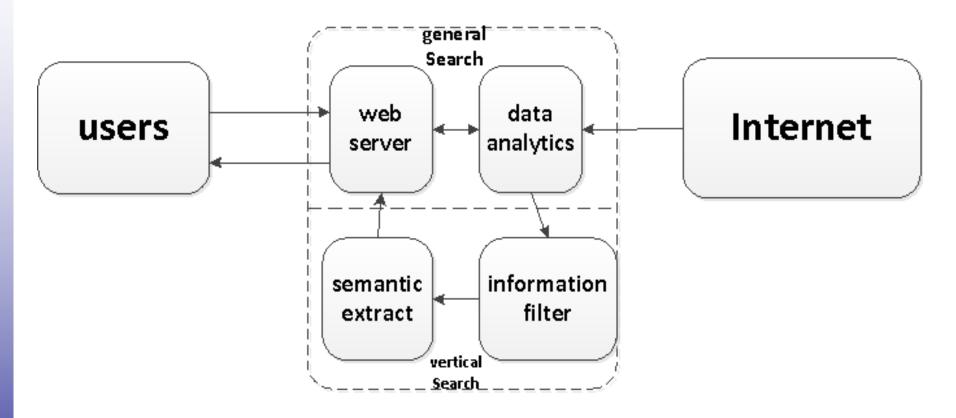
Big data workloads and real-world data sets

Gang Lu

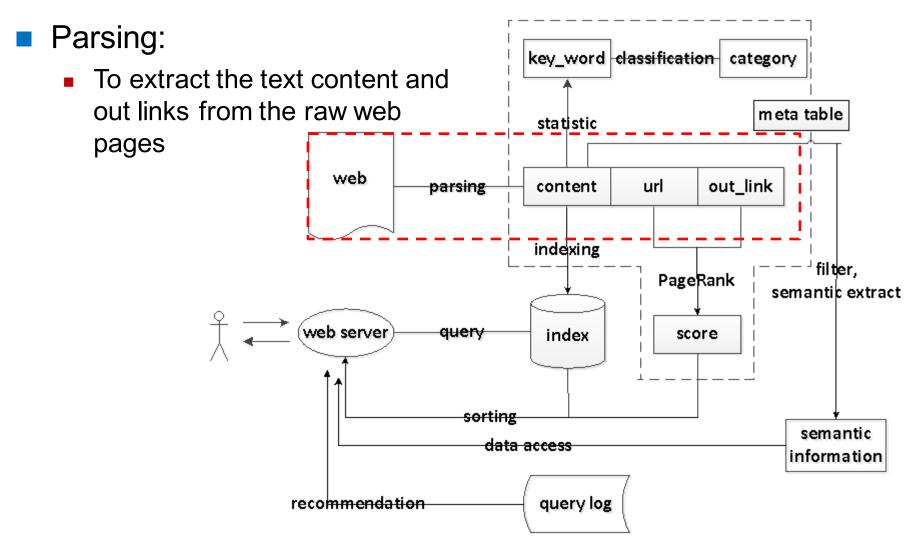
Beijing Academy of Frontier Science and Technology

BigDataBench Tutorial, ASPLOS 2016 Atlanta, GA, USA

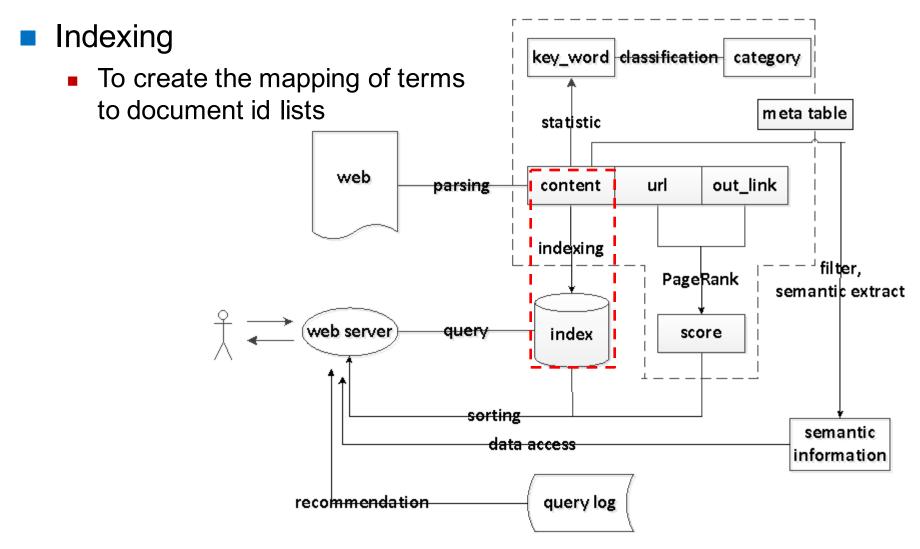


Five domains

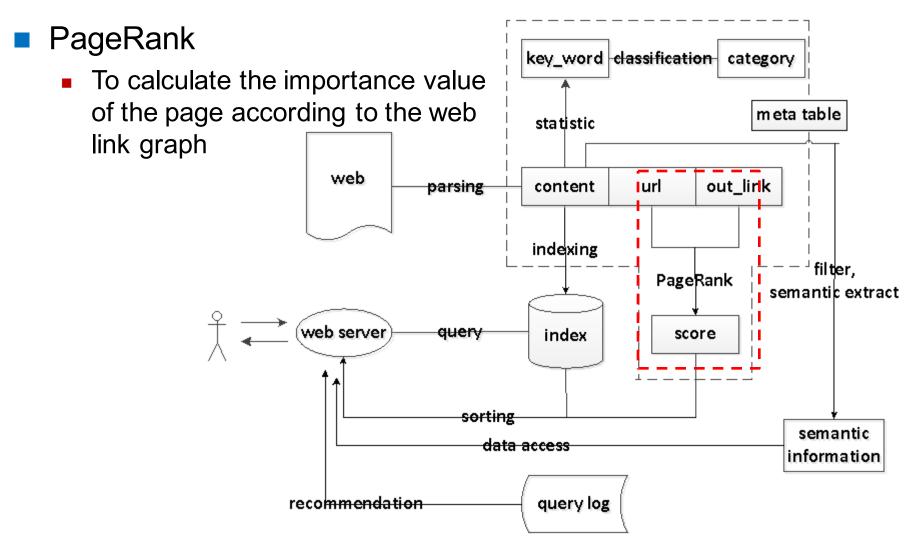
- Search engine
- Social network
- E-commerce
- Multi-media
- Bioinformatics


Search Engine

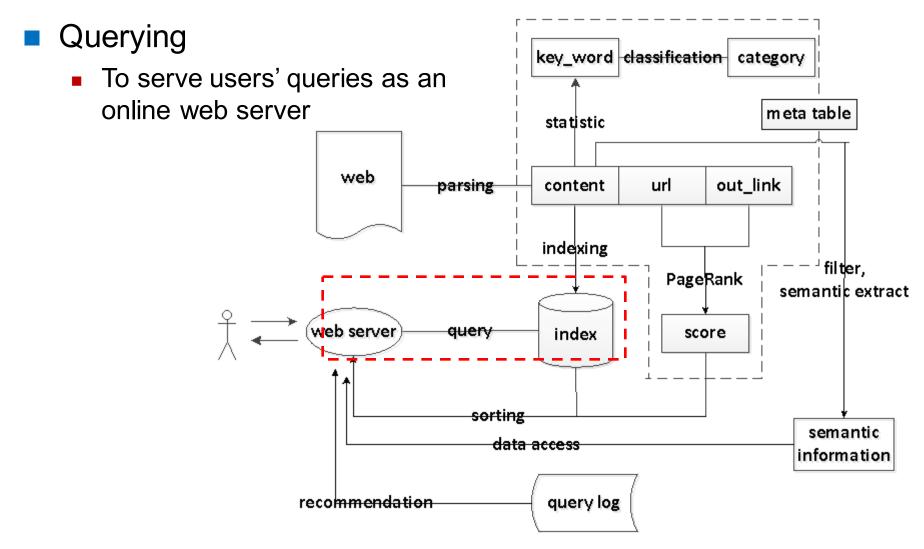
General search and vertical search Online server and Offline analytics



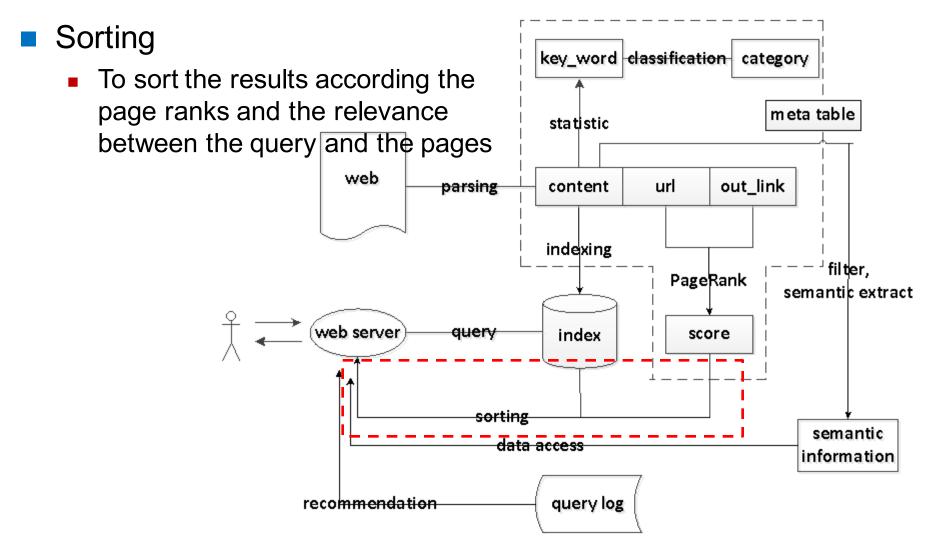
Search Engine: Parsing



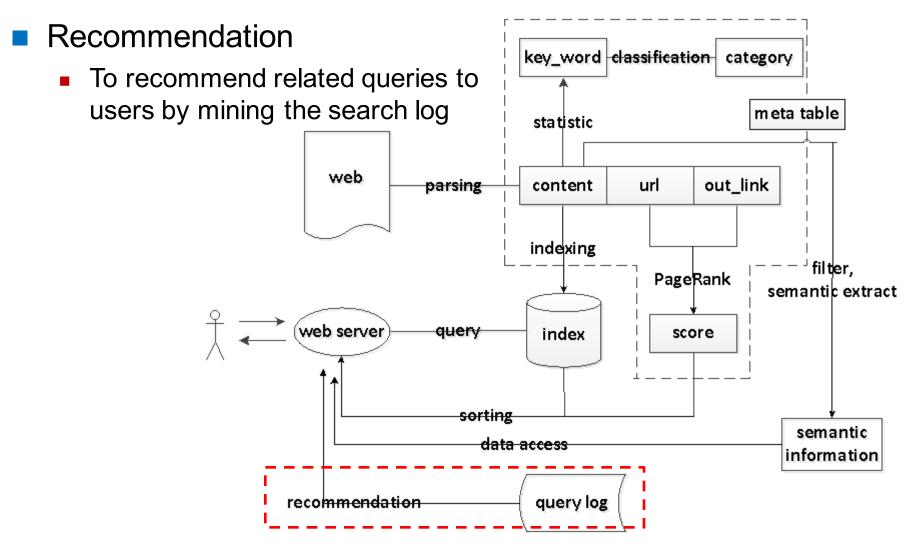
Search Engine: Indexing



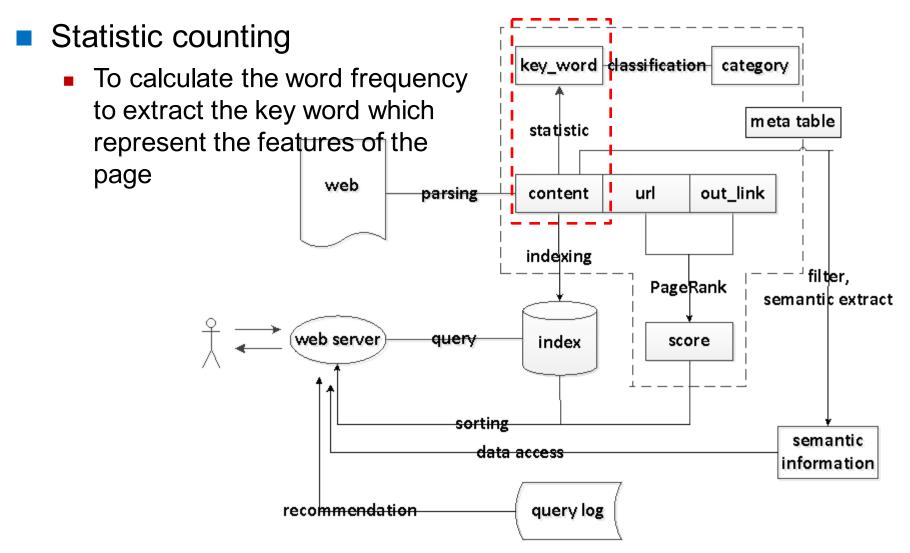
Search Engine: PageRank



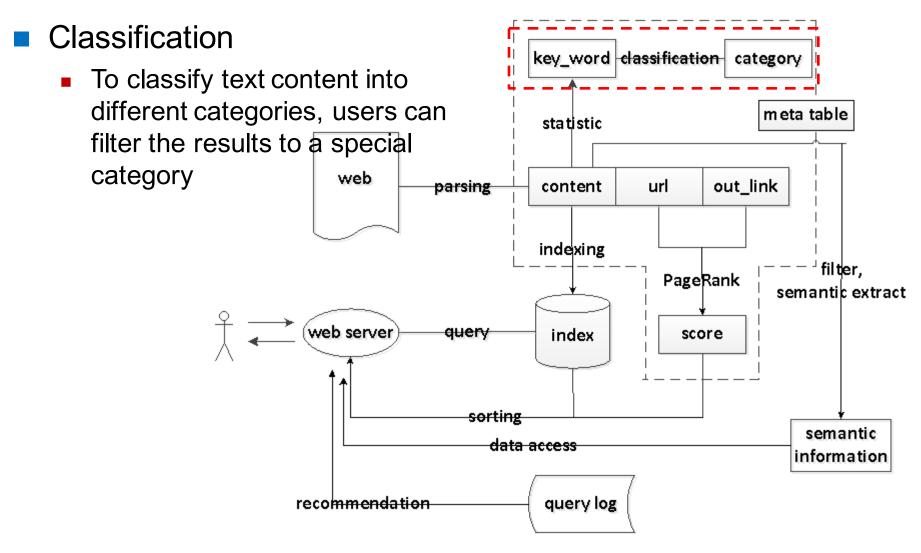
Search Engine: Search query



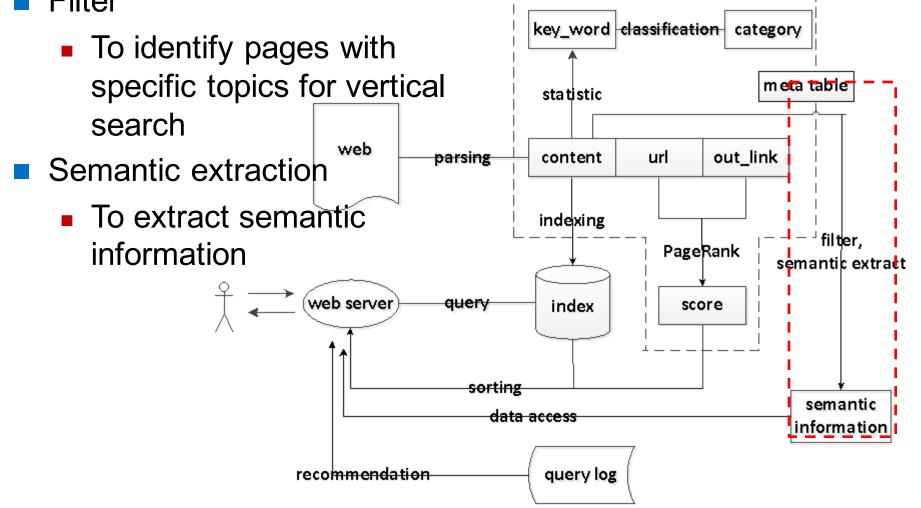
Search Engine: Sorting



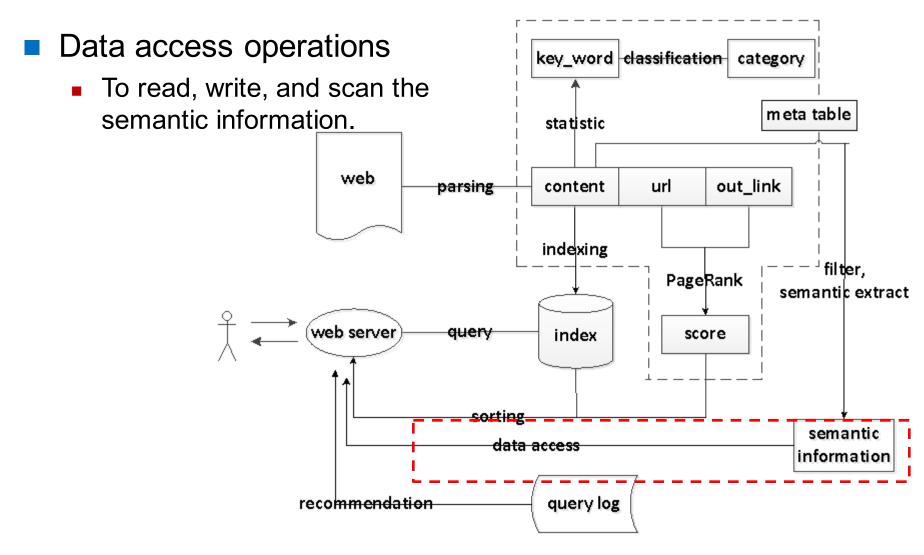
Search Engine: Recommendation



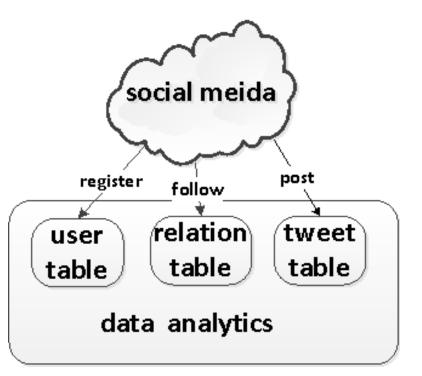
Search Engine: Statistic counting



Search Engine: Classification


Search Engine: Filter & Semantic extraction

BAFST


Search Engine: Data access

Social network

Data sets User table Relation table Article/tweet table Workloads Offline analytics

Social network: Data schema

User table

attribute	description
user_id	the id of the user
sex	the sex of the user
age	the age of the user
education	the situation of education
tag	the terms showing characteristics of the user

attribute	description		
user_id	the id of the user		
follow_user_id	the user id who is followed		

attribute	description
tweet_id	the id of the tweet
content	the content of the tweet
user_id	the id of user who own the tweet
review_number	the number of review
$transmit_number$	the number of transmitting
time	the publish time of the tweet

Tweet table

Relation table

Social network: Workloads

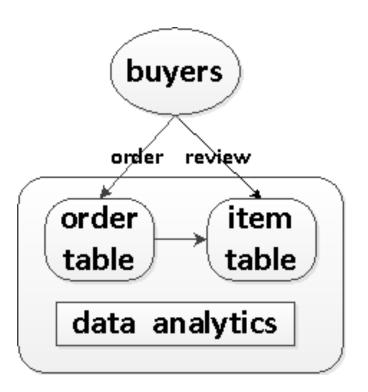
- Hot review topics
 - To select the top N tweets by the number of review
- Hot transmit topics
 - To select the tweets which are transmitted more than N times.
- Active users
 - □ To select the top N person who posted the largest number of tweets.
- Leaders of opinion
 - To select top ones whose number of review and transmit are both larger than N.

Social network: Workloads

- Topic classification
 - □ To classify the tweets to certain topics.
- Sentiment classification
 - To classify the tweets to negative or positive according to the sentiment.

Friend recommendation

To recommend friends to person according the relational graph.


Community detection

- To detect clusters or communities in large social networks.
- Breadth first search
 - □ To sort persons according to their distance.

E-commerce

Data sets
Order table
Item table
Workloads
Offline analytics

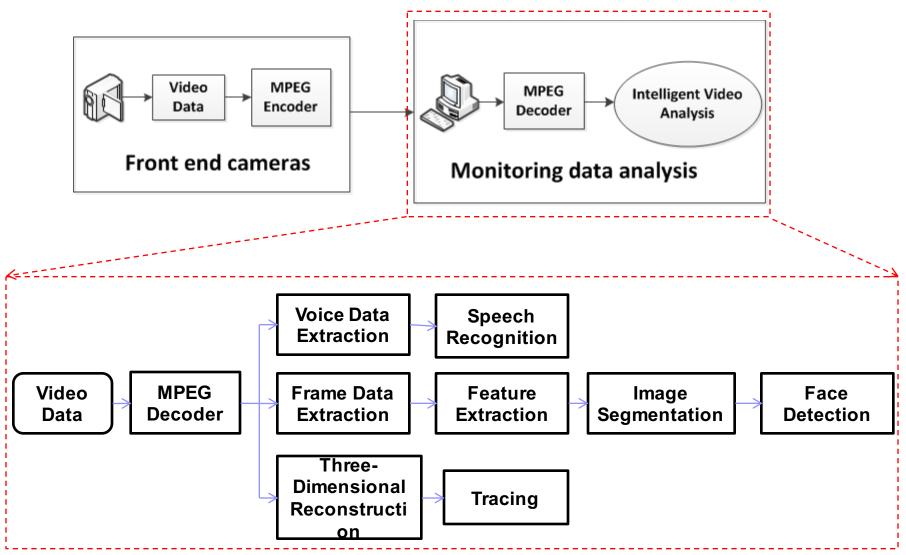
E-commerce: Data schema

Order table

attribute	description
order_id	the id of the order
buyer_id	the id of person who own the order
time	the time of the order occurred

Item table

attribute	description	
item_id	the id of the item	
order_id	the id of order which the item belongs to	
goods_id	the id of goods	
goods_number the number of goods		
price the price of goods		
amount the total assumption of the it		
score the score the buyer gave		
review the text commence the buyer gav		


E-commerce: Workloads

- Select query
 - To find the items whose sales amount is over 100 in a single order.
- Aggregation query
 - □ To count the sales number of each goods.
- Join query
 - To count the number of each goods that each buyer purchased between certain period of time.
- Recommendation
 - To predict the preferences of the buyers and recommend goods.
- Sensitive classification
 - □ To Identify positive or negative review.
- Basic data operation
 - □ To unit of operation of the data

The workloads of select, aggregation, and join are similar as queries used in A. Pavlo's SIGMOD'09 paper, but are specified in the e-commerce environment

Multimedia

Multimedia: Workloads

MPEG Decoder.

To decode video streams using MPEG-2 standard.

Feature extraction

For a given video frame, to extract features which are invariant to scale, noise, and illumination.

Speech Recognition.

For a given audio file, to recognize the content of the file and find whether exists sensitive words.

Multimedia: Workloads

Ray Tracing.

To render a 2-Dimensional video frame to a 3-Dimensional scene.

Image Segmentation.

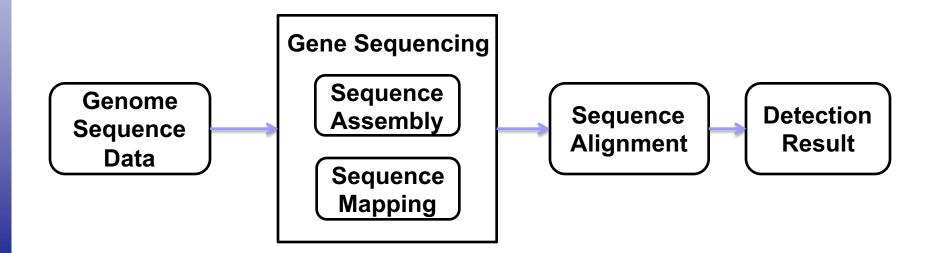
To segment the input video frame according to color, intensity, and texture, and extract concerned regions.

Face Detection.

To detect whether face exists in the input data, if exists, then extract the face.

Deep Learning.

To classify the input images into different categories, and then detect human face.


Bioinformatics

Sequence assembly.

To assemble scattered and repetitive DNA fragments to original long sequence.

Sequence alignment.

To align assembled DNA sequence to known sequences in the database, and detect disease.

Summary: Real data sets

No.	data sets	data set description ¹	scalable data set
1	Wikipedia Entries	4,300,000 English articles (unstructured	
		text)	
2	Amazon Movie Reviews	7,911,684 reviews (semi-structured text)	Text Generator of BDGS
3	Google Web Graph	875713 nodes, 5105039 edges (unstruc-	Graph Generator of BDGS
		tured graph)	
4	Facebook Social Network	4039 nodes, 88234 edges (unstructured graph)	Graph Generator of BDGS
5	E-commerce Transaction	Table 1: 4 columns, 38658 rows. Table 2: 6	Table Generator of BDGS
	Data	columns, 242735 rows (structured table)	
6	ProfSearch Person Re- sumés	278956 resumés (semi-structured table)	Table Generator of BDGS
7	ImageNet	ILSVRC2014 DET image dataset (un-	ongoing development
0	Frankah hara daratiran aradia	structured image)	an main m danalammant
8	files	Sampled at 16 kHz, 16-bit linear sampling (unstructured audio)	ongoing development
9	DVD Input Streams	110 input streams, resolution: $704*480$	ongoing development
		(unstructured video)	
10	Image scene	39 image scene description files (unstruc- tured text)	ongoing development
11	Genome sequence data	cfa data format (unstructured text)	4 volumes of data sets
12	Assembly of the human genome	fa data format (unstructured text)	4 volumes of data sets
13	SoGou Data	the corpus and search query data from So-	ongoing development
		Gou Labs (unstructured text)	ongoing development
14	MNIST	handwritten digits database which has	ongoing development
		60,000 training examples and 10,000 test	
		examples (unstructured image)	
15	MovieLens Dataset	User's score data for movies, which has	
		9,518,231 training examples and $386,835$	
		test examples(semi-structured text)	

Summary: Search Engine

ID	Implementation	Description	Data set	Software stack
W1-1	Grep	String searching used to		Hadoop, MPI,
		parser web pages	······································	Spark, Flink
W1-2	WordCount	Counting the word fre-	Wikipedia Data	MPI, Spark,
		quency to do statistic		Hadoop, Flink
W1-4	Index	Indexing web pages for	Wikipedia data	MPI, Spark,
		searching		Hadoop
W1-5	PageRank	Computing the importance	Google We	b MPI, Spark,
		of the page	Graph	Hadoop, Flink
W1-6-1	Nutch Server	Providing online search	Sogou Data	Nutch
		services		
W1-6-2	Search	Real-time search based on	Search Data	JStorm
		Lucene		
W1-7	Sort	Ordering the data	Wikipedia data	MPI, Spark,
				Hadoop
W1-11-1	Read	Read operation of data ac-	Personal Resume	s HBase, Mysql
		cess		
W1-11-2	Write	Write operators of data ac-	Personal Resume	s HBase, Mysql
		cess		
W1-11-3	Scan	Scan operators of data ac-	Personal Resume	s HBase, Mysql
		cess		

Various implementation

Summary: Social network

ID	Implementation	Description	Data set	Software stack	
W2-1	Rolling Top	RollingTopNWord al-	Random Gener-	JStorm, Spark	
	Words	gorithm which used to	ate	Streaming	
		recommend hot topic			
W2-8-1	CC	Community detection us-	Facebook Social	MPI, Spark,	
		ing Connect Component	Network	Hadoop,	
		algorithm		GraphX,	
				GraphLab,	
				Flink Gelly	
W2-8-2	Kmeans	Community detection us-		MPI, Spark,	
		ing Kmeans algorithm	Network	Hadoop,	
				Flink, Spark	
				Streaming	
W2-8-3		Label propagation algo-		$\operatorname{GraphX},$	
	tion	rithm for community de-	Network	GraphLab,	
		tection in graphs		Flink Gelly	
W2-8-4	Triangle Count	Triangle count algorithm		GraphX,	
		for community detection in	Network	GraphLab,	
		graphs		Flink Gelly	
W2-9	BFS	Breadth first search	synthetic graph	MPI,	
				GraphX,	
			GraphLab,		
				Flink Gelly	

Summary: E-commerce

ID	Implementation	-	Data set	Software stack
W3-1	Select query	Find the items of which the	E-commence	Hive, Shark, Im-
		sales amount is over 100 in	Transaction	pala
		a single order		
W3-2	Aggregation	Count the sales number of	E-commence	Hive, Shark, Im-
	query	each goods	Transaction	pala
W3-3	Join query	Count the number of each	E-commence	Hive, Shark, Im-
		goods that each buyer pur-	Transaction	pala
		chased between certain pe-		
		riod of time		
W3-4	CF	Recommendation using	Amazon Movie	Hadoop, Spark,
		Collaborative Filtering	Reviews	MPI, JStorm
		algorithm		
W3-5	Native Bayes	Sensitive classification us-	Amazon Movie	Hadoop, Spark,
		ing Native Bayes algorithm	Reviews	MPI
W3-6-1	Project	Basic operator	E-commerce	Hive, Shark, Im-
			Transaction	pala
W3-6-2	Filter	Basic operator	E-commerce	Hive, Shark, Im-
			Transaction	pala
W3-6-3	Cross Product	Basic operator	E-commerce	Hive, Shark, Im-
			Transaction	pala
W3-6-4	OrderBy	Basic operator	E-commerce	Hive, Shark, Im-
			Transaction	pala
W3-6-5	Union	Basic operator	E-commerce	Hive, Shark, Im-
			Transaction	pala
W3-6-6	Difference	Basic operator	E-commerce	Hive, Shark, Im-
			Transaction	pala
W3-6-7	Aggregation	Basic operator	E-commerce	Hive, Shark, Im-
			Transaction	pala

Summary: Multimedia

ID	Implementation	Description	Data Set	Software
				Stack
W4-1	BasicMPEG [43]	MPEG2 decode/encode	DVD Input Streams	Libc
W4-2-1	SIFT [48]	Detect and describe local features in	ImageNet	MPI
		input images		
W4-2-2	DBN [48]	Implementation of Deep Belief Net-	MNIST	MPI
		works		
W4-3	Speech Recognition [6]	Translate spoken words into text	English broadcasting	MPI
			audio files	
W4-4	Ray Tracing [60]	Generating an 3D image by tracing	Image scene	MPI
		light		
W4-5	Image Segmentation	Partitioning an image into multiple	ImageNet	MPI
	[29]	segments		
W4-6	Face Detection [61]	Detecting face in an image	ImageNet	MPI

Summary: Bioinformatics

ID	Implementation	Description	Data Set	Software
				Stack
W5-1	SAND	Sequence assembly implementations	Genome	Work
		which merge genome fragments to get	sequence data	Queue
		the original genome sequence		
W5-2	BLAST	Sequence alignment implementations	Assembly of	MPI
		which identify the similarity between tar-	the human	
		get sequence with sequence in database	genome data	

