On Horizontal Decomposition of

the Operating System

Gang Lu

Beijing Academy of Frontier Science and Technology

BPOE-7, ASPLOS 2016
Atlanta, GA, USA

Contact: lugang@mail.bafst.com
Technical Report: https://arxiv.org/abs/1604.01378

Content

m Background & motivation
m Related work

m Design and implementation

A new OS model—horizontal OS model
A new OS abstraction—subOS
The first prototype—RainForest

m Evaluation
m Conclusion

Low resource utilizations

0.030+ -
m Average utilization < 40%l" .. M Mostly around 30%
1 Google: <40% g 0.020___ |)l/
1 Amazon: < 30% % 0.015 |
1 VMWare: < 30% § 0.01d
7 Mozilla: <10% 5 ood
1 Others: <10%

O A A A A A N
0O 0.1 02030405060.70809 1
CPU utilization

Application specific Workload fluctuation

resource requirementsl? (Resource overprovision)

- 70
[Search engine 5 60 T -
(&) -
. 330 AARRRN RN EENA .
Online Service Social networks 2 40] T
» -
£ 30 R TLLRER
+ 3 E-commerce © 20 l:]-] g InNEE
. . o 10 197 = 1 y 1 - i i
Offline analytics | \yjimedia ') [¥sdddoyl™ " " T
_ Bioinformatics 0 2 4 6 8 10 12 14 16 18 20 22

Time (Hour)

[1] Warehouse-Scale Computing: Entering the Teenage Decade. Luiz Andre Barroso, Google. ISCA'11
[2] Bigdatabench: A big data benchmark suite from internet services. Lei Wang, etc.. HPCA'14.

Workload consolidation?

m Consolidate workloads: to S|multaneously run on

1 2X. T T T T T T T T

the same maChlne Lix|- Performance metric: averagelatency

1 Severe interference
Degradation > 20%

eaI: 1

C solo GC+S C+P W solo W+S W+P B sdo B+S B+P

Fig 1. Performance interference scenarios of consolidating different
applicationsin Google data centers, solo denotesrunning alone [

1 Large scale online services are more interference sensitive

Google deploys online services and offline batches in
differentclustersid

Requests - @R merged ReSp,onse : :
subreq results g 30% E
g ' g
4 I o
Only all leaf components If we take tail latency as the < : <
satisfy QoS, the root performance metric, for a 3 ! E
(merged responss) can 100-leafdistribution, to make =2 : <
satisfy QoS £ I £
v Q P(root< 15)=0.99, 3 i |
P(root<1s)=P(Ieaf<1s)N T0 02 04 06 08 1 ! 025 05 075 1
f We mUSt guarantee: CPU utilization CPU utilization
P: percentage of requests Online services Offline batch
i P(leaf < 1s) >0.999899 iné balches
satisfying QoS () Fig 2. Resource utilization distributions of Google’s two clusters!?

[1] The impact of memory subsystem resource sharing on datacenterapphcatlons Lingjia Tang, etc.. ISCA'11.
[2] The Datacenteras a Computer: An Introduction to the Design of Warehouse-Scale Machines, Second edition. Google, Inc. . 2013 4

Causes of interference

shared states

m Interference points

Structures Synchronization Shared software
protected by locks among replicas buffers
big kernel lock, TLB shootdown file system buffer
vm_commited_as, inode cache,
vfsmount... dentry cache...

contend lock => stalls forced sync => interruption cache eviction=> reload

/’C\?ait updatg %Dinte@ﬁ?up;t" 1 1@?1 2’/<2>

core0 core2 cored3...

~ 1 replaced
with
Globally . infgr?:;\;ecle- increasing = ~alability problem
shared states ’ cores P

\ sync cost
cache consistency sync cost in

architecture level 5

“Increasing cores challenge scalability

m Manycore processors become a trend

71 Intel released 18-core processor
m 4 Sockets constructs a 72-core server

1 The low resource utilization problem deteriorates
m More resource waste for running a single workload
m Performance bottleneck with increasing cores

12000 - h 15 ’%‘
= © Throughput S . .
g 10000 = Kernel time 12 % App“Cat|On
w
g 8000 %
(] 9 L]]
£ coo0 3 Runtime library
S . €
: 4000 2
= 3 =]
E 2000 g
r o
0 : 0 [. .
1 4 8 12 16 20 24 28 32 36 40 {4 48 5 MICFO-aI’ChIteCture

Number of cores

Scalability evaluation of Email servef Exim

running on Linux " ¥ Many shared structures in the
Performance degrades dramatically kernel (also cause interference)

with increasing execution time ofkernel

[1]1 An analysis of linux scalability to many cores. S. Boyd-Wickizer, etc.. OSDI'10. 6

Isolation & Scalability of Linux

m Take Linux as an example

Interference among syscalls

S
more processes
. .
o0
© |
o
= 7 o (1,2)
O, | —o— (4,8)
= - (83
— (8,16)
a -A- (10,10)
< —A— (10,20)
—m— (12,24)
O‘ T I
0 10 15 20

Invocation time on Linux—-3.17.4 (us)

Fig 1. Latency distribution of syscall
mmap, (X, y) denotes y processes run on x
cores (Leftis better)
Causes: updates of the global
variable vm_commited _as

Latency (us)

Scalability of memcached

4000

——
4
+

3000

2000

1000

0

0

Linux-2.6.32, 99th tail
Linux-2.6.35M, 99th tail
Linux-3.17.4, 99th tail
Linux-2.6.32, average
Linux-2.6.35M, average
Linux-3.17.4, average
/ N

A S
> oV

10 20 30
Number of cores

tail latency

40
average latency

Fig 2. Tail latency performance of
memcached with increasing cores

(Smalleris better)

Causes: lock-protected structures,
like inode list, Dcache lists

Motivation

m Improve performance isolation from the
OS level

Construct high-isolation OS structures and
prototype

= Improve isolation for consolidated workloads

= Improve tail latency performance

m Improve the scalability from the OS level

Construct high-scalability OS structures and
prototype

= Improve OS scalability for manycore platforms

Content

m Background & motivation
m Related work

m Design and implementation

A new OS model—horizontal OS model
A new OS abstraction—subOS
The first prototype—RainForest

m Evaluation
m Conclusion

Monolithic kernel & micro kernel

m Many globally shared data structures
1 Monolithic: mostly in kernel space
1 Micro: partially in kernel space, partially user space

Application System Call |
_— in kernel space

uscer

mode partially moved to Shared states
userspace are not reduced

\

Application
1PC

kernel
mode

Hardware Hardware

Monolithic kernel Microkernel
Linux[1], Unix, Windows Mach[2], L4
[1] Linux kernel website. https://www.kernel.org/. 10

[2] On micro-kernel construction. Liedtke, Jochen. ACM, 1995.

Exokernel & VMMs

m Shared data structures still exist
1 Exokernel: reduced kernel functions
1 VMM: centralized resource management, an exokernel-

I I ke St ru Ct u re Virtual Machine Host Server Virtual Machine Virtual Machine Virtual Machine
Mgmt Path
m DE— Paravirtualized OS Paravirtualized OS Unmodified 0S
SUSE Linux [Linux | [NetWare] [MS Windows |
Host OS
/MOSA Application Kam;m | A Mo] - ‘D @ m @
(intemnal) i @ . @ .
; WWW DSM
- ————————-many managemem__,,___,_\———
'. | dt IbO$ S N B
\ POSIX | Tcp /are movedto li ‘, IPC N\ VM \‘ ! :
| N /_ s
l Library operating systems ‘L ‘/ Virtual IO Path -
— N Virtual 10 Path A\
e S T
\ - Direct 10 Path XEN Hypervi (Virtual Machine Monitor)
Exokernel Secure bindin@\
—— —ilc < b\ — 10 & Platform Devices Memaly8.CPU
Hardware | Frame buffer | TLB Network Mehﬁg Disk OB ACPL 0y Hardware iy W

Physical Machine

Fig 1. Architecture of exokernell Fig 2. Architecture of Xen!?l
hypervisor & virtualized resources;

central access control

[1] Exokernel: An operating system architecture for application-level resource management. D. R. Engler, et.al.. ACM, 1995. 11
[2] Xen and the art of virtualization. P. Barham, et al..SIGOPS OSR, 2003.

central access control still exists

Multi-kernel structures

m Globally shared data structures

Need to maintain global consistency

s Distributed message communication (one-phase, two-
phase commitment)

m Distributed shared memory

! 1
| App | | App | 5 I_l_]
i Normal threads] Nightwatch threads J
cCoTYyYyY v -- -— ---------- \ L —
0OS node | | OS node | | OS node Single System Image
Agreement "
algorithms State State State |K Async messages) [V&tate N Main kernel Shadow kernel
replica replica replica replica Software
Coherence

Arch-specific
code

Heterogeneous
cores

Shadowed services : : Shadowed services

K2 0S

Independent |Ceordinated| |nqependent

Private
services

Private
services

x86 x64 ARM oo GPU services <:> services
< rv— > 3 E ARV Cortexh ARM Cortex-M3
=
o
Architecture of Barrelfish [Architecture of K212

States are still globally shared

[1] The multikernel: a new os architecture for scalable multi- core systems. A. Baumann, et al.. SOSP’09.
[2] K2: A mobile operating system for heterogeneous coherence domains. F. X. Lin, et al.. ASPLOS14.

Summary of existing OS models

m Make balance between “sharing” and “isolation”

1 First sharing, later isolation

m Make kernel in charge of both resource provision and
management

m Have to share states globally
m Construct OS abstractions upon e

shared states in kernel space /%~ Perfoljpance
S Portalility :
Sharing, Se¢EY Isolation,
We cannot get rid of | T

maintaining consistency of ElaStiCith}Scalability
globally shared states

L 2

First isolation, later sharing?

13

Content

m Background & motivation
m Related work

m Design and implementation

A new OS model—horizontal OS model
A new OS abstraction—subOS
The first prototype—RainForest

m Evaluation
m Conclusion

Our method: horizontal OS model

m A new OS model

Design principles

s Horizontally decomposed OS functions
m Isolation and elasticity of OS instances
s Confined and on-demand state sharing

/

Trusted

supervisor subOS (resource principal)

-~

First isolation, later sharing

resource management
isolation and elasticity
isolation and sharing

Traditional OS abstractions

Common
Services

AY

\
Management —
API
_—
Resource
provision Exclusive

resource zone

(thread, process, corltainer)

N

Untrusted

code

Host machine

code

Architecture of the horizontal 0S model

Horizontal OS model

E A nhew OS model resource | J isolationand __ isolationand
management elasticity sharing
Design principles

= Horizontally decomposed OS functions

“resource provisioning” & “resource management”
Discover, monitor, provision
physical resources: resource pool,
allocation/reclaim

Directly drive physical resources,
/ provide upper-layer abstractions

Traditional OS abstractions

supervisor subOS (resou\rce principal) (thread, process, container)

L

Managemeht ol —
API
Common :t @ @
Services
Resource
provision| Exclusive

Trusted respurce zone

% " Host machine

Horizontal OS model

m A new OS model
Design principles
s Horizontally decomposed OS functions
m Isolation and elasticity of OS instances

resource
managemen

—

t

/

Trusted

supervisor
7

Common
Services

subOS (resource principal)

Management
API

proyision

il

Exclusive

isolation and e isolation and
elasticity sharing
Traditional OS abstractions
(thread, process, cor\nainer)
Resources

L1

~ flow freely

N

\ resource zone /

Untrusted

code

Host machine/

AN

code

Creation, destroying,

V

and resource

adjustment of subOSes

N

Vv

Each sub0OS runs as an

independent kernel on

individual resource zones

Horizontal OS model

Ceuhiae)(0e)

N

2 A new OS model resource |solat|o.n.and _ |solat|o_n and
management elasticity sharing
Design principles
s Horizontally decomposed OS functions
m Isolation and elasticity of OS instances
s Confined and on-demand state sharing
. bOS | Traditional OS abstractions
supe/rvnsor su (resource principal) (thread, process, contamer)
Management A =
API
Common —p
Services ———»
Resource
/ \ provision Exclusuv - | N
Trusted \ / e e zone | Untrusted
code ' code
@ o)

Host me\lihine/

Very limited state sharing

Basic configurations

"

Ny

Create sharing on—demand
Communication, data sharing,

Content

m Background & motivation
m Related work

m Design and implementation

A new OS model—horizontal OS model
A new OS abstraction—subOS
The first prototype—RainForest

m Evaluation
m Conclusion

OS abstractions

m Traditional OS abstractions
Process, thread, container, virtual machine

creating and destroying of a process, dynamically create/destroy a subOS,

resource allocation and reclaim resource adjustment
inter-process communication(IPC) construct communication channels
among subOS based on shared
memory

parent-child relationship (fork) self-propagation (fork a child subOS)

resource accounting provided by kernel coarse-grained accounting in
(proc file system) supervisor, fined-grained accounting
in each subOS

kernel provides sys calls and services supervisor provides APIls
obtain hardware topology and resource get the information through

information through system calls each subOS

A new OS abstraction

m Relationship between subOS and others

1 subOS can run processes, containers, even other OS
structures, like VMM, micro-kernel, etc.

1 subOSes can be run in VMMs

Virtual Machine Host Server Virtual Machine Virtual Machine Virtual Machine
m m Paravirtualized OS Paravirtualized OS Unmodified OS
- . . SUSE Linux [Linux] [NetWare] [MS Windows]
supervisor subOS (resomga principal) Hos 08 D _© D _© D _©
~ V4 gt «
Mpnagement /'_’[mm 1 @ ® ®
API
Common > o
Services I
Resource I
/ provision i = — Ao Vitual ,o\m..
Trusdted // reS(g XEN Hypervisor (Virtual Machine Monitor)
code
Host maching PU
/ (Eﬁtﬂgs%?g. Hardware (XB::(:‘;&%ECI:G‘;:T)
Fig 1. The horizontgf OS model 5

A process (or 1ib0S), a full-

featured kernel, container,
virtual machine, etc.

Physical Machine

Fig 2. The VMM architecture
A horizontal OS with subOSes

21

Content

m Background & motivation
m Related work

m Design and implementation

A new OS model—horizontal OS model
A new OS abstraction—subOS
The first prototype—RainForest

m Evaluation
m Conclusion

A prototype: RainForest

m Based on the horizontal OS model
m Works on homogeneous SMP platforms

X86, a single Root Complex, global cache consistency

m Architecture of RainForest
supervisor is based on Linux, booted with the hardware

subOS adopts independent monolithic kernel, booted by
supervisor

Use

Kerng

Mange(arrf'nrs)nt tool ‘ App I App ’
! | Resource B RFloop || RFfuse || RFtun -
g provisioner — 5
1&8_ supcon subOScon ||| RFcom El)gvice subOScon
[Ficm q T T Fem |

[P

[aYel

Lo~

|

System functions of ma

IPI: inter-processaqr interru

e re-built because of structural change!

naging a subOS need to

Design of RainForest/ ™=~ .~ | =

=
©| Resource
O | provisioner

‘ RFloop H RFfuse H RFtun ‘
\ J

supcon subOSconI RFcom Device subOScon
m Shared states are managed| Fov ,[[T Fov | [Fow
= = = = supervisor Pl subOS subOS
using different policies p
Globally shared states: more read, less write Reduce global
States protected by supervisor: R/W infrequently shareq .sta’FeS and
:) participation of
Partially shared states: frequent read & write .
Confined state sharing supervisor
Traditional » v “a
method Globally Protected Mutually
shared states states shared states
¥ . A
Global page Critical m,emory Shared memory\
or devices
Communication core ow memory, /O API Split drivers, FICM,
ist, /O APIC addres, Loop
Iernal MAC list /.

: : L self-defined shared states
lock protection supervisor authorization

in shared memory
globally shared globally shared small sharing scope
more reads R/W infrequently frequent R/W

Design of RainForest

Mangement tool { A J l A }
User (rfm) PP PP

s Communication based on IR e ||| T e [mn | [7]
FICM: a basic inter-core/subOS pevee |
communication channel | ||l Fom |

Y

supcon subOScon || RFcom subOScon

RFcontroller

1Pl

- supervisor subOS subOS

m Designed for short, fast messages "

supervisor subOS
Msg created on Msg
/ handler kernel initiation| | handler \
Local msg /\ Local msg
= "_J:__‘ "";__‘ b Globally shared stat
obally shared states

AW g T~ T pogel | .Mappad /W mss :

————— ; 9 P9 - - ———Read: polling | Aglobal page:

lock1 to protect

@A Pl A@ OSID-Communication core list
|/ OSID-> _ R

Communication core lock2to protect
U OSDI-VIF MAC list

Working mechanism of FICM

Basis of the elasticity of subOS OSIDis the ID of a subOS

Design of RainForest

m Boot procedure of a subOS

supervisor assists to RESET the first core(BSP)
Then other cores are booted by subOS itself

subOS
coreO

(/4\

mpollne Custom ed trampoline__}subOS private memory

///////

supervisor memory

core1 core2

PhyS|caI
memory

ﬂl|||||||‘n E
- s R
s 7
e
'l
e
~~—
\
AN
\
\
\

Supervisor .
Centralized control

Protected by supervisor:
Low memory
I/O APIC pin

@
~

S n [Mangerrf’nenttool [App J | App J
Design of RainForest - B
% Resource ‘RFIoopH RFfuse H RFtun ‘
B | provisioner < .
5,58_ supcon subOScon || RFcom || pavice subOScon
m On-demand state sharingr .| .rov ™" |rov |

) 1PI
supervisor subOS subOS

Based on IPl and shared memory
m subOSes communicate using RFloop
m other split device drivers

Split driver in RainForest Split driver in Xen
1. Combination of IPl and polling 1. Globally shared event channels
2. Self-controlled memory mapping 2. VMM managed memory mappings
3. Direct memory translation (VA-PA) 3. Two-phase memory translation

supervisor subOS DomO domU

IP| .
D
Backend |« ~Frontend Backend |« chz\::g:I «»|Frontend
e A 4
oy oy P.hysica'l

'Memory| | _ [Shared | _| | Memory| device drivier

| mapped | memory | mapped |

_____ - ———- - Event Channel e

Frontend backend structure (RainForest) Frontend backend structure (Xen)

Implementation of RainForest

m A full-featured OS

supervisor and subOS are based on Linux-2.6.32
Most functions implemented as modules, easy to install

or remove

Runs stable in many platforms
= Intel Xeon E5620, E5645, E5-2620, E5-2640, and E7-8870
The refactoring efforts based on Linux-2.6.32

Component

Number of Lines

The primary booted OS instance
The RFcontroller module

A subOS

FICM / RFcom / |subOSc0n
RFloop / RFtun / RFfuse

others (rfm)

994 —
1837 ~ Core parts: not
) > much modified
1969 —
1438 / 1522/ 1331
752/ 2339/ 980
4789

Including insertions and

modifications

Content

m Background & motivation
m Related work

m Design and implementation

A new OS model—horizontal OS model
A new OS abstraction—subOS
The first prototype—RainForest

m Evaluation
m Conclusion

m Testbed and benchmarks

Evaluation and analysis

Fig 2. Information of two different servers

Fig 1. Version information of different systems

Systems Kernel Ver. | Software Ver. | Execution entity
Linux-2.6.32 2.6.32 - Processes
Linux-3.17.4 3.174 - Processes
Linux-2.6.35M 2.6.35Modified - Processes
LXC-host 2.6.32 0.7.5 -
[_XC-containers 2.6.32 - Containers
Xen-VMM - 4.0.0 -
Xen-domain 0/U 2.6.32 - VM
RainForest-Supervisor 2.6.32 1.0 -
RainForest-subOSes 2.6.32 1.0 subOS

Features evaluated:
subOS performance
tail latency performance
performance isolation
elasticity
scalability
performance of individual components

Server-A Server-B
CPU type Intel Xeon ES645 | Intel Xeon E7-8870
Number of cores 6 cores@2.4GHz | 10 cores@2.4GHz
Number of threads 12 20
CPU sockets 2 4
L1 DCache 32KB, 8-way associative, 64 byte/line
L1 ICache 32KB, 4-way associative, 64 byte/line
L2 Cache 256 KB, 8-way associative, 64 byte/line
2MB | 30 MB
L3 Cache —— -
16-way associative, 64 byte/line
DRAM capacity 32 GB,DDR3 | 1 TB, DDR3
) 8 [Intel igh ethernet 1000Mb/s
Network interface cards
2 Broadcom ethernet 1000Mb/s
Hard disk drives 8 Seagate 1TB 7200RPM, 64MB cache

Fig 3. Benchmarks and main configurations

Benchmarks | Ver. Main configurations Sources
Will-It-Scale 1.0 Infinite loops Mbench
SPEC CPU | 2006 - Mbench
PARSEC 3.0 Large datasets Mbench
cachebench 1.0 - Mbench
netperf 2.6.0 - Mbench
iozone 3.420 - Mbench
memcached | 1.2.2 Keep full load mosbench & Mbench
Search(nutch) | 1.1 | Request rate: Xen(240req/s) | BigDataBench & Mbench
Others(300req/s)
Spark 1.0 TPC-DS, BigDataBench | BigDataBench & Mbench
Hadoop 1.0.2 BigDataBench BigDataBench & Mbench
Metis 1.0 1~5G records mosbench

Evaluation: performance isolation

(Smaller

il : ¢« B2 -- 1 --
2 8 7 @936 2
I - ¢ ------
4 1626051 1 1 2 IHE
1 11 20 Gola@iGl :» 2 : I
271036323315-1--
7 15 7 51 a8 25 [loHION s
on ERlEE z B2 2 --
8--------50 o]
o1 14 3 [HIEHNE :
i || ----- 1 B

01 2 3 4 5 6 7 8 9 10

(a) Linux-3.17.4

NN s W N = O

HENEENEE

713 0N 3 E5

e o [l IGHGH o NN B
<lolololfollollofo]72
o BN
6 7

H-~Hl-HlE-

1011 10 5 2 2 1
0 1 2 3 4 5

==
o

(¢) Xen

[y

is better)

OBEN 3 6 B0
12 8 8 B8
Yo -
34 13 24 B8
42 9 21 B8

5 7 |24 125 B3
6 6 16 18
706 [HSH A4

51

42 [

6 7

(d) RainForest

Heatmap of the performance interference
(degradation percentage of performance) of two
workloads in a single server. x-axis denotes the

interferers, y-axis denotes the victims.

 Server: 12 cores, 32G RAM

different micro benchmarks

covering CPU, cache,
filesystem, and network

OS instances: 2
Every OS instance runs a
r workload on

6 cores,16G RAM

On RainForest,
interference is lower

31

Evaluation: performance isolation

m Online services interfered by offline batches

Degradation of

) blackscholes & bodytrack O canneal @ dedup & facesim .
< 7| ®Eferret ™ fluidanimate freqmine Craytrace O streamcluster tall |atency
B swaptions mvips mx264

- performance of

1 % /‘ Search on

[B & RainForest is
£3 less than 5%

——
h
|

percentile latency

@
i

Performance degradation of 99th

OO T

bibdddbbbdbidd

il

[T 1]]]

X ZXZZIXZ3 K

VA LLLLLLLYL

VISLSLSSSILIY,

_Iﬂ [OTITTTL I

=
>~
@

Xen RainForest

Performance(99t" percentile latency) degradation of ' Workload: Search + Parsec
Search when interfered by Parsec workloads, . Server: 12 cores, 32G RAM
comparing to the performance with no interferer ' OS instances: 2
' Each OS instance runs a
. Search backend or a Parsec
workload on 6 cores, 176G RAM

2

400

g

rg)

99th percentile latency (ms)

CPU utilization (%)
°c 2o <o =
SN ()] o0 =]

©
)

o
(=

Evaluation: Tail latency

m Tail latency performance of latency critical
workloads

| ®Linux-2.6.35M

oLXC

| OXen

@ RainForest

| @Linux-2.6.35M : v o =3 |
e (smaller is better) a2 || @i EIQ
O Xen :r = *: f :
| @RainForest =Rl - A 4 :
ju ARl
~__7|:_ 7.. 7:1 4_- { :

= = = | R | Y
- - S LEILE R PR Y
g - ’) I: -: " ;) 5 :
| Ak ZF? gigH ﬁ_ HIR I ZEI AR ORI AR A
50 100 150 200 250 300 350 400 450 500 0 600 !

Request rate (requests / second) .
RainForest

(a) 99t percentile latency

(Larger is better)

w
N7

50

"
100 5

L
e
SOOOOOO00

l......;...l‘

.
7 NN, NN,

350 400
Request rate (requests/ second)

(b) CPU utilization

450

Workload: Search

Server: 12 cores, 32G RAM

OS instances: 2

Maximum throughputs of

Linux, LXC, Xen, and
RainForest are 400,

350, and 500 (QoS: 200ms)

- CPU utilizations:
419 59.8%, 58.0%, 55.7%, and

69.7% (QoS: 200ms)

350,

33

Evaluation: cost of elasticity

m Cost of resource adjustment

Table 1. Cost of resource adjustment in each system (in seconds).

Configuration | 6 CPUs, 16G RAM | 6 CPUs, 16G RAM 1 CPU 512M RAM
Operations | create destroy create | destroy online | offline | online | offline
LXC 2.1 ~0 2.1 1 0.002 | 0.002 | 0.002 | 0.002
Xen 14.2 5.9 255.2 240.0 0.126 | 0.127 | 0.167 | 0.166
RainForest 6.1 ~0 6.1 5.4 0.066 | 0.054 | 0.020 | 0.006

. . = = ' Workload: Search + Parsec
Evaluation: elasticity :sever 12cores, 526 rAM
i OS instances: 2
' Each OS instance runs a Search
' backend or a Parsec workload

- Make cores adJUSt initially on 6 cores, 16G RAM
800 Large fluctuatjons on | arge tall latenc
Z 700, Lifuxand LXC | ge tafl fatency
> 600 - I
9 | l/
g 500 - ! |3 h 1! fluctuat
S 400 | PARSEC batch Nutch
§ 300)&\-75) Platform running time | 99%th tail latency | throughput
ic)- 200 N Units seconds ms req/s
2 100 Linux-2.6.32 1058.7 379.3 217.1
0+ | 1s |
0o | Linux-2.635M 1136.5 371.4 217.9 31 Small
Linux-3.17.4 1054.4 410.8 219.1 fluctuation on
Fig 1| LXC 1716.8 284.1 2140 |ar$eCp i orast
o &3 Xen 4731.0 305.4 209.4
2 50 .
% 4318 - RainForest %520.0 230.2 | 2144
3 -
g %8 ! +Search and Parsec &yhen co-located
0p ns fasterthan LXC and Smallest tail latenc

0 2 . , Y Similar throughput
Xef b%/iiié]‘\%?g é?ﬂfgé%@% on RainForest
Im

Fig 2. load vs. 9

Workload: Wiil-It-Scale; memcached

. : Server: 40 cores, 1T RAM

m Throughput & tail latency : os instances: 4 |
i Each OS instance runs :
on 10 cores, 250G RAM

Number of cores

Throughput of system call mmap with

increasing cores (larger is better)

Number of corgncrease slowly

Tail latency of memcached with
increasing cores (smaller is better)

N~ - % et !
| i - . .
% =~ RainForest F |- Linux-2.6.32
- w | 2632 = |~ Linux-2.6.35M
Linux-3.17.4 Z o |—#— Linux-3.17.4
? g # \ o3 1—=— LXC
8 3 S |—— Xen
1 = .
. 4 R = _ |—¢ RainForest
(] . = (ri
£ .| / RainForest gets best B
c h (4
£3] /[scalabilit 5
F wow @ — = A
€7 | 4 | g -
@ o . e 5/\
8 | L R
é “ﬁf&mﬁgﬁauﬁu?vtﬁii = . . T |
S0 20 40 60 80 0 10 20 30 \1 40

Content

m Background & motivation
m Related work

m Design and implementation

A new OS model—horizontal OS model
A new OS abstraction—subOS
The first prototype—RainForest

m Evaluation
m Conclusion

Conclusion

m Low resource utilization and emerging hardware
calls for the structure change of the OS
The performance interference & scalability problems

m We propose a new horizontal OS model with a
new OS abstraction
First isolation, later sharing
Three principles

m We build the prototype based on Linux and
evaluation results show it surpasses Linux, Linux
Containers, and Xen in performance isolation and

scalability.
Source code will soon be available

Any questions?

Backup

In-memory computing

WAL . Sparkdi Ry 67 2
R4 2% Y. 40 #%, 1T RAM

G A
. ARG l
Performance of Spark BT, 108 2506 RAM
1.8
Linux-2.6.32 Linux-2.6.35M 5 >
o 16 EL;EEE—&WA le;clgx RFloop’is K INIE -
B 14 - SXen [+ RainForest | 13%~32%
-% i & RainForest-RFloop
S Eos N BANLIE 7 N \
g .50 N N T \E
g3 N3 N oS N
706 - NI t:::: . 1-/:\: 05 e f ﬁ._
5 04 Eif} NER :3’//:3 il 3:? NH
£ o TR o= R u
02 - NS S:: HONT Y S::
. Na NH HANT A NH
Kmeans PageRank Select Join Aggregation

SparkitE 42 b AR SR G R RS GRl/INER G

RainForestAH X} T-Linux. LXC AlXen HJfx R0
b3 ik £1)1.64x 1.69x Fl11.74x

41

