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Low resource utilizations
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[1] Warehouse-Scale Computing: Entering the Teenage Decade. Luiz Andre Barroso, Google. ISCA'11
[2] Bigdatabench: A big data benchmark suite from internet services. Lei Wang, etc.. HPCA'14.




Workload consolidation?

m Consolidate workloads: to S|multaneously run on

1 2X. T T T T T T T T

the same maChlne Lix|- Performance metric: averagelatency

1 Severe interference
Degradation > 20%
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Fig 1. Performance interference scenarios of consolidating different
applicationsin Google data centers, solo denotesrunning alone [

1 Large scale online services are more interference sensitive

Google deploys online services and offline batches in
differentclustersid
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[1] The impact of memory subsystem resource sharing on datacenterapphcatlons Lingjia Tang, etc.. ISCA'11.
[2] The Datacenteras a Computer: An Introduction to the Design of Warehouse-Scale Machines, Second edition. Google, Inc. . 2013 4




Causes of interference

shared states

m Interference points

Structures Synchronization Shared software
protected by locks among replicas buffers
big kernel lock, TLB shootdown file system buffer
vm_commited_as, inode cache,
vfsmount... dentry cache...

contend lock => stalls  forced sync => interruption  cache eviction=> reload

/’C\?ait updatg %Dinte@ﬁ?up;t" 1 1@?1 2’/<2>

core0 core2 cored3...

~ 1 replaced
with
Globally . infgr?:;\;ecle- increasing = ~alability problem
shared states ’ cores P

\ sync cost
cache consistency sync cost in

architecture level 5




“Increasing cores challenge scalability

m Manycore processors become a trend

71 Intel released 18-core processor
m 4 Sockets constructs a 72-core server

1 The low resource utilization problem deteriorates
m More resource waste for running a single workload
m Performance bottleneck with increasing cores
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Scalability evaluation of Email servef Exim

running on Linux " ¥ Many shared structures in the
Performance degrades dramatically kernel (also cause interference)

with increasing execution time ofkernel

[1]1 An analysis of linux scalability to many cores. S. Boyd-Wickizer, etc.. OSDI'10. 6




Isolation & Scalability of Linux

m Take Linux as an example

Interference among syscalls
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Fig 1. Latency distribution of syscall
mmap, (X, y) denotes y processes run on x
cores (Leftis better)
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Causes: lock-protected structures,
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Motivation

m Improve performance isolation from the
OS level

Construct high-isolation OS structures and
prototype

= Improve isolation for consolidated workloads

= Improve tail latency performance

m Improve the scalability from the OS level

Construct high-scalability OS structures and
prototype

= Improve OS scalability for manycore platforms
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Monolithic kernel & micro kernel

m Many globally shared data structures
1 Monolithic: mostly in kernel space
1 Micro: partially in kernel space, partially user space

Application System Call |
_— in kernel space

uscer

mode  partially moved to Shared states
userspace are not reduced

\

Application
1PC

kernel
mode

Hardware Hardware

Monolithic kernel Microkernel
Linux[1], Unix, Windows Mach[2], L4
[1] Linux kernel website. https://www.kernel.org/. 10

[2] On micro-kernel construction. Liedtke, Jochen. ACM, 1995.



Exokernel & VMMs

m Shared data structures still exist
1 Exokernel: reduced kernel functions
1 VMM: centralized resource management, an exokernel-
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Fig 1. Architecture of exokernell Fig 2. Architecture of Xen!?l
hypervisor & virtualized resources;

central access control

[1] Exokernel: An operating system architecture for application-level resource management. D. R. Engler, et.al.. ACM, 1995. 11
[2] Xen and the art of virtualization. P. Barham, et al..SIGOPS OSR, 2003.

central access control still exists



Multi-kernel structures

m Globally shared data structures

Need to maintain global consistency

s Distributed message communication (one-phase, two-
phase commitment)

m Distributed shared memory

! 1
| App | | App | 5 I_l_ ]
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States are still globally shared

[1] The multikernel: a new os architecture for scalable multi- core systems. A. Baumann, et al.. SOSP’09.
[2] K2: A mobile operating system for heterogeneous coherence domains. F. X. Lin, et al.. ASPLOS14.



Summary of existing OS models

m Make balance between “sharing” and “isolation”

1 First sharing, later isolation

m Make kernel in charge of both resource provision and
management

m Have to share states globally
m Construct OS abstractions upon e

shared states in kernel space /%~ Perfoljpance
S Portalility :
Sharing,  Se¢EY  Isolation,
We cannot get rid of | T

maintaining consistency of ElaStiCith}Scalability
globally shared states

L 2

First isolation, later sharing?

13
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Our method: horizontal OS model

m A new OS model

Design principles

s Horizontally decomposed OS functions
m Isolation and elasticity of OS instances
s Confined and on-demand state sharing

/

Trusted

supervisor subOS (resource principal)

-~

First isolation, later sharing

resource management
isolation and elasticity
isolation and sharing

Traditional OS abstractions

Common
Services

AY

\
Management —
API
_—
Resource
provision Exclusive

resource zone

(thread, process, corltainer)

N

Untrusted

code

Host machine

code

Architecture of the horizontal 0S model



Horizontal OS model

E A nhew OS model resource | J isolationand __ isolationand
management elasticity sharing
Design principles

= Horizontally decomposed OS functions

“resource provisioning” & “resource management”
Discover, monitor, provision
physical resources: resource pool,
allocation/reclaim

Directly drive physical resources,
/ provide upper-layer abstractions

Traditional OS abstractions

supervisor subOS (resou\rce principal) (thread, process, container)

L

Managemeht ol —
API
Common :t @ @
Services
Resource
provision| Exclusive

Trusted respurce zone

% " Host machine




Horizontal OS model

m A new OS model
Design principles
s Horizontally decomposed OS functions
m Isolation and elasticity of OS instances

resource
managemen

—
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il
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V
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Horizontal OS model

Ceuhiae)(0e)

N

2 A new OS model resource |solat|o.n.and _ |solat|o_n and
management elasticity sharing
Design principles
s Horizontally decomposed OS functions
m Isolation and elasticity of OS instances
s Confined and on-demand state sharing
. bOS | Traditional OS abstractions
supe/rvnsor su (resource principal) (thread, process, contamer)
Management A =
API
Common —p
Services ———»
Resource
/ \ provision Exclusuv - | N
Trusted \ / e e zone | Untrusted
code ' code
@ o)

Host me\lihine/

Very limited state sharing

Basic configurations

"

Ny

Create sharing on—demand
Communication, data sharing,
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OS abstractions

m Traditional OS abstractions
Process, thread, container, virtual machine

creating and destroying of a process, dynamically create/destroy a subOS,

resource allocation and reclaim resource adjustment
inter-process communication(IPC) construct communication channels
among subOS based on shared
memory

parent-child relationship (fork) self-propagation (fork a child subOS)

resource accounting provided by kernel coarse-grained accounting in
(proc file system) supervisor, fined-grained accounting
in each subOS

kernel provides sys calls and services supervisor provides APIls
obtain hardware topology and resource get the information through

information through system calls each subOS



A new OS abstraction

m Relationship between subOS and others

1 subOS can run processes, containers, even other OS
structures, like VMM, micro-kernel, etc.

1 subOSes can be run in VMMs

Virtual Machine Host Server Virtual Machine Virtual Machine Virtual Machine
m m Paravirtualized OS Paravirtualized OS Unmodified OS
- . . SUSE Linux [ Linux ] [ NetWare ] [ MS Windows ]
supervisor subOS (resomga principal) Hos 08 D _© D _© D _©
~ V4 gt «
Mpnagement /'_’[mm 1 @ ® ®
API
Common > o
Services I
Resource I
/ provision i = — Ao Vitual ,o\m..
Trusdted // reS( g XEN Hypervisor (Virtual Machine Monitor)
code
Host maching PU
/ (Eﬁtﬂgs%?g. Hardware (XB::(:‘;&%ECI:G‘;:T)
Fig 1. The horizontgf OS model 5

A process (or 1ib0S), a full-

featured kernel, container,
virtual machine, etc.

Physical Machine

Fig 2. The VMM architecture
A horizontal OS with subOSes
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A prototype: RainForest

m Based on the horizontal OS model
m Works on homogeneous SMP platforms

X86, a single Root Complex, global cache consistency

m Architecture of RainForest
supervisor is based on Linux, booted with the hardware

subOS adopts independent monolithic kernel, booted by
supervisor

Use
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Design of RainForest/ ™=~ .~ | =

=
©| Resource
O | provisioner

‘ RFloop H RFfuse H RFtun ‘
\ J

supcon subOSconI RFcom Device subOScon
m Shared states are managed| Fov ,[[T Fov | [ Fow
= = = = supervisor Pl subOS subOS
using different policies p
Globally shared states: more read, less write Reduce global
States protected by supervisor: R/W infrequently shareq .sta’FeS and
: ) participation of
Partially shared states: frequent read & write .
Confined state sharing supervisor
Traditional » v “a
method Globally Protected Mutually
shared states states shared states
¥ . A
Global page Critical m,emory Shared memory\
or devices
Communication core ow memory, /O API Split drivers, FICM,
ist, /O APIC addres, Loop
Iernal MAC list /.

: : L self-defined shared states
lock protection  supervisor authorization

in shared memory
globally shared globally shared small sharing scope
more reads R/W infrequently frequent R/W



Design of RainForest

Mangement tool { A J l A }
User (rfm) PP PP
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FICM: a basic inter-core/subOS pevee |
communication channel | ||l Fom |

Y
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1Pl

- supervisor subOS subOS

m Designed for short, fast messages "

supervisor subOS
Msg created on Msg
/ handler kernel initiation| | handler \
Local msg /\ Local msg
= "_J:__‘ "";__‘ b Globally shared stat
obally shared states
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lock1 to protect

@A Pl A@ OSID-Communication core list
|/ OSID-> \_ R
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Working mechanism of FICM

Basis of the elasticity of subOS OSIDis the ID of a subOS




Design of RainForest

m Boot procedure of a subOS

supervisor assists to RESET the first core(BSP)
Then other cores are booted by subOS itself

subOS
coreO

(/4\

mpollne Custom ed trampoline__}subOS private memory

/////// ......

supervisor memory

core1 core2

PhyS|caI
memory

ﬂl|||||||‘n E
- s R
s 7
e
'l
e
~~—
\
AN
\
\
\

Supervisor .
Centralized control

Protected by supervisor:
Low memory
I/O APIC pin
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S n [ Mangerrf’nenttool [ App J | App J
Design of RainForest - B
% Resource ‘RFIoopH RFfuse H RFtun ‘
B | provisioner < .
5,58_ supcon subOScon || RFcom || pavice subOScon
m On-demand state sharingr .| .rov ™" |rov |

) 1PI
supervisor subOS subOS

Based on IPl and shared memory
m subOSes communicate using RFloop
m other split device drivers

Split driver in RainForest Split driver in Xen
1. Combination of IPl and polling 1. Globally shared event channels
2. Self-controlled memory mapping 2. VMM managed memory mappings
3. Direct memory translation (VA-PA) 3. Two-phase memory translation

supervisor subOS DomO domU

IP| .
D
Backend |« ~Frontend Backend |« chz\::g:I «»|Frontend
e A 4
oy oy P.hysica'l

'Memory| | _ [ Shared | _| | Memory| device drivier

| mapped | memory | mapped |

_____ - ———- - Event Channel e

Frontend backend structure (RainForest) Frontend backend structure (Xen)



Implementation of RainForest

m A full-featured OS

supervisor and subOS are based on Linux-2.6.32
Most functions implemented as modules, easy to install

or remove

Runs stable in many platforms
= Intel Xeon E5620, E5645, E5-2620, E5-2640, and E7-8870
The refactoring efforts based on Linux-2.6.32

Component

Number of Lines

The primary booted OS instance
The RFcontroller module

A subOS

FICM / RFcom / |subOSc0n
RFloop / RFtun / RFfuse

others (rfm)

994  —
1837 ~ Core parts: not
) > much modified
1969  —
1438 / 1522/ 1331
752/ 2339/ 980
4789

Including insertions and

modifications
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m Testbed and benchmarks

Evaluation and analysis

Fig 2. Information of two different servers

Fig 1. Version information of different systems

Systems Kernel Ver. | Software Ver. | Execution entity
Linux-2.6.32 2.6.32 - Processes
Linux-3.17.4 3.174 - Processes
Linux-2.6.35M 2.6.35Modified - Processes
LXC-host 2.6.32 0.7.5 -
[_XC-containers 2.6.32 - Containers
Xen-VMM - 4.0.0 -
Xen-domain 0/U 2.6.32 - VM
RainForest-Supervisor 2.6.32 1.0 -
RainForest-subOSes 2.6.32 1.0 subOS

Features evaluated:
subOS performance
tail latency performance
performance isolation
elasticity
scalability
performance of individual components

Server-A Server-B
CPU type Intel Xeon ES645 | Intel Xeon E7-8870
Number of cores 6 cores@2.4GHz | 10 cores@2.4GHz
Number of threads 12 20
CPU sockets 2 4
L1 DCache 32KB, 8-way associative, 64 byte/line
L1 ICache 32KB, 4-way associative, 64 byte/line
L2 Cache 256 KB, 8-way associative, 64 byte/line
2MB | 30 MB
L3 Cache —— -
16-way associative, 64 byte/line
DRAM capacity 32 GB,DDR3 | 1 TB, DDR3
) 8 [Intel igh ethernet 1000Mb/s
Network interface cards
2 Broadcom ethernet 1000Mb/s
Hard disk drives 8 Seagate 1TB 7200RPM, 64MB cache

Fig 3. Benchmarks and main configurations

Benchmarks | Ver. Main configurations Sources
Will-It-Scale 1.0 Infinite loops Mbench
SPEC CPU | 2006 - Mbench
PARSEC 3.0 Large datasets Mbench
cachebench 1.0 - Mbench
netperf 2.6.0 - Mbench
iozone 3.420 - Mbench
memcached | 1.2.2 Keep full load mosbench & Mbench
Search(nutch) | 1.1 | Request rate: Xen(240req/s) | BigDataBench & Mbench
Others(300req/s)
Spark 1.0 TPC-DS, BigDataBench | BigDataBench & Mbench
Hadoop 1.0.2 BigDataBench BigDataBench & Mbench
Metis 1.0 1~5G records mosbench




Evaluation: performance isolation
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(d) RainForest

Heatmap of the performance interference
(degradation percentage of performance) of two
workloads in a single server. x-axis denotes the

interferers, y-axis denotes the victims.

 Server: 12 cores, 32G RAM

different micro benchmarks

covering CPU, cache,
filesystem, and network

OS instances: 2
Every OS instance runs a
r workload on

6 cores,16G RAM

On RainForest,
interference is lower
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Evaluation: performance isolation

m Online services interfered by offline batches

Degradation of

) blackscholes & bodytrack O canneal @ dedup & facesim .
< 7| ®Eferret ™ fluidanimate freqmine Craytrace O streamcluster tall |atency
B swaptions mvips mx264
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Performance(99t" percentile latency) degradation of ' Workload: Search + Parsec
Search when interfered by Parsec workloads, . Server: 12 cores, 32G RAM
comparing to the performance with no interferer ' OS instances: 2
' Each OS instance runs a
. Search backend or a Parsec
workload on 6 cores, 176G RAM
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Evaluation: Tail latency

m Tail latency performance of latency critical
workloads

| ®Linux-2.6.35M

oLXC

| OXen

@ RainForest

| @Linux-2.6.35M : v o =3 |
e (smaller is better) a2 || @i EIQ
O Xen :r = *: f :
| @RainForest =Rl - A 4 :
ju ARl
~__7|:_ 7.. 7:1 4_- { :

= = = | R | Y
- - S LEILE R PR Y
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(a) 99t percentile latency
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(b) CPU utilization

450

Workload: Search

Server: 12 cores, 32G RAM

OS instances: 2

Maximum throughputs of

Linux, LXC, Xen, and
RainForest are 400,

350, and 500 (QoS: 200ms)

- CPU utilizations:
419 59.8%, 58.0%, 55.7%, and

69.7% (QoS: 200ms)

350,
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Evaluation: cost of elasticity

m Cost of resource adjustment

Table 1. Cost of resource adjustment in each system (in seconds).

Configuration | 6 CPUs, 16G RAM | 6 CPUs, 16G RAM 1 CPU 512M RAM
Operations | create destroy create | destroy online | offline | online | offline
LXC 2.1 ~0 2.1 1 0.002 | 0.002 | 0.002 | 0.002
Xen 14.2 5.9 255.2 240.0 0.126 | 0.127 | 0.167 | 0.166
RainForest 6.1 ~0 6.1 5.4 0.066 | 0.054 | 0.020 | 0.006




____________________________________

. . = = ' Workload: Search + Parsec
Evaluation: elasticity :sever 12cores, 526 rAM
i OS instances: 2
' Each OS instance runs a Search
' backend or a Parsec workload

- Make cores adJUSt initially on 6 cores, 16G RAM
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§ 300 )&\-75) Platform running time | 99%th tail latency | throughput
ic)- 200 N Units seconds ms req/s
2 100 Linux-2.6.32 1058.7 379.3 217.1
0+ | 1s |
0o | Linux-2.635M 1136.5 371.4 217.9 31 Small
Linux-3.17.4 1054.4 410.8 219.1 fluctuation on
Fig 1| LXC 1716.8 284.1 2140 |ar$eCp i orast
o &3 Xen 4731.0 305.4 209.4
2 50 .
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Workload: Wiil-It-Scale; memcached

. : Server: 40 cores, 1T RAM

m Throughput & tail latency : os instances: 4 |
i Each OS instance runs :
on 10 cores, 250G RAM

Number of cores

Throughput of system call mmap with

increasing cores (larger is better)

Number of corgncrease slowly

Tail latency of memcached with
increasing cores (smaller is better)
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m Design and implementation

A new OS model—horizontal OS model
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Conclusion

m Low resource utilization and emerging hardware
calls for the structure change of the OS
The performance interference & scalability problems

m We propose a new horizontal OS model with a
new OS abstraction
First isolation, later sharing
Three principles

m We build the prototype based on Linux and
evaluation results show it surpasses Linux, Linux
Containers, and Xen in performance isolation and

scalability.
Source code will soon be available
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