
On Horizontal Decomposition of
the Operating System

Gang Lu
Beijing Academy of Frontier Science and Technology

BPOE-7, ASPLOS 2016
Atlanta, GA, USA

Contact: lugang@mail.bafst.com
Technical Report: https://arxiv.org/abs/1604.01378

Content

n Background & motivation
n Related work
n Design and implementation

¨A new OS model—horizontal OS model
¨A new OS abstraction—subOS
¨The first prototype—RainForest

n Evaluation
n Conclusion

2

Low resource utilizations

3

n Average utilization < 40%[1]

¨ Google: < 40%
¨ Amazon: < 30%
¨ VMWare: < 30%
¨ Mozilla: < 10%
¨ Others: < 10%

[1] Warehouse-Scale Computing: Entering the Teenage Decade. Luiz Andre Barroso, Google. ISCA’11
[2] Bigdatabench: A big data benchmark suite from internet services. Lei Wang, etc.. HPCA’14.

Search engine

Social networks

E-commerce

Multi-media

Bioinformatics

Online service
+

Offline analytics

Application specific
resource requirements[2]

Workload fluctuation
(Resource overprovision)

0 10.90.80.70.60.50.40.30.20.1
0

0.030

0.025

0.020

0.015

0.010

0.005

CPU utilization

F
ra

ct
io

n
of

 t
im

e

0
10
20
30
40
50
60
70

0 2 4 6 8 10 12 14 16 18 20 22
Time (Hour)

R
eq

ue
st

s
/s

ec
on

d

Mostly around 30%

Workload consolidation?
n Consolidate workloads: to simultaneously run on

the same machine
¨ Severe interference

¨ Large scale online services are more interference sensitive

4[1] The impact of memory subsystem resource sharing on datacenter applications. Lingjia Tang, etc.. ISCA’11.
[2] The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, Second edition. Google, Inc. . 2013

30% 75%

Online services Offline batches
Fig 2. Resource utilization distributions of Google’s two clusters[2]

Fig 1. Performance interference scenarios of consolidating different
applications in Google data centers，solo denotes running alone [1]

Performance metric: average latency

Only all leaf components
satisfy QoS, the root
(merged responss) can
satisfy QoS

P(root<1s)=P(leaf<1s)N

P: percentage of requests
satisfying QoS

Requests …
leaf

comp

splited
subreq

leaf
comp

merged
results

Response

Google deploys online services and offline batches in
different clusters[2]

If we take tail latency as the
performance metric, for a
100-leaf distribution, to make

P(root < 1s)=0.99，
We must guarantee：

P(leaf < 1s) >0.999899

Degradation > 20%

Ideal: 1

Causes of interference
n Interference points——shared states

5

Structures
protected by locks

Synchronization
among replicas

Shared software
buffers

big kernel lock，
vm_commited_as，
vfsmount…

TLB shootdown file system buffer
inode cache，
dentry cache…

contend lock => stalls forced sync => interruption cache eviction=> reload

1 2

scalability problem

lock

1 2 3

core 0 core 2 core 3

…

…
waitacquire interruptupdate

1 2

1 1 1 1 2 …

1

soft-level
interference;

sync cost

with
increasing

cores

sync cost in
architecture level

Globally
shared states

cache consistency

replaced

n Manycore processors become a trend
¨ Intel released 18-core processor

n 4 Sockets constructs a 72-core server
¨ The low resource utilization problem deteriorates

n More resource waste for running a single workload
n Performance bottleneck with increasing cores

Increasing cores challenge scalability

6[1] An analysis of linux scalability to many cores. S. Boyd-Wickizer, etc.. OSDI’10.

Scalability evaluation of Email server Exim
running on Linux[1]

Performance degrades dramatically
with increasing execution time of kernel

Application

Runtime library

Kernel

Micro-architecture

Many shared structures in the
kernel (also cause interference)

Isolation & Scalability of Linux

n Take Linux as an example

7

Interference among syscalls

Fig 1. Latency distribution of syscall
mmap,(x, y) denotes y processes run on x

cores（Left is better）

more processes

more cores

Fig 2. Tail latency performance of
memcached with increasing cores

（Smaller is better）

tail latency

average latency

Scalability of memcached

Causes：lock-protected structures,
like inode list, Dcache lists

Causes：updates of the global
variable vm_commited_as

Motivation

n Improve performance isolation from the
OS level
¨ Construct high-isolation OS structures and

prototype
n Improve isolation for consolidated workloads
n Improve tail latency performance

n Improve the scalability from the OS level
¨ Construct high-scalability OS structures and

prototype
n Improve OS scalability for manycore platforms

8

Content

n Background & motivation
n Related work
n Design and implementation

¨A new OS model—horizontal OS model
¨A new OS abstraction—subOS
¨The first prototype—RainForest

n Evaluation
n Conclusion

9

Monolithic kernel & micro kernel

n Many globally shared data structures
¨ Monolithic：mostly in kernel space
¨ Micro：partially in kernel space，partially user space

10

Linux[1]，Unix，Windows Mach[2]，L4

in kernel space

partially moved to
user space

Shared states
are not reduced

[1] Linux kernel website. https://www.kernel.org/.
[2] On micro-kernel construction. Liedtke, Jochen. ACM, 1995.

Exokernel & VMMs

n Shared data structures still exist
¨ Exokernel：reduced kernel functions
¨ VMM：centralized resource management, an exokernel-

like structure

11

Fig 1. Architecture of exokernel[1] Fig 2. Architecture of Xen[2]

central access control still exists

many management
are moved to libOS

hypervisor & virtualized resources；
central access control

[1] Exokernel: An operating system architecture for application-level resource management. D. R. Engler, et.al.. ACM, 1995.
[2] Xen and the art of virtualization. P. Barham, et al..SIGOPS OSR, 2003.

Multi-kernel structures

n Globally shared data structures
¨ Need to maintain global consistency

n Distributed message communication (one-phase, two-
phase commitment)

n Distributed shared memory

12

Architecture of Barrelfish [1] Architecture of K2[2]

States are still globally shared
[1] The multikernel: a new os architecture for scalable multi- core systems. A. Baumann, et al.. SOSP’09.
[2] K2: A mobile operating system for heterogeneous coherence domains. F. X. Lin, et al.. ASPLOS’14.

Sharing Isolation

ScalabilityElasticity

Portability

Security

Performance

n Make balance between “sharing” and “isolation”
¨ First sharing, later isolation

n Make kernel in charge of both resource provision and
management

n Have to share states globally
n Construct OS abstractions upon
shared states in kernel space

Summary of existing OS models

13

We cannot get rid of
maintaining consistency of

globally shared states

First isolation, later sharing?

Content

n Background & motivation
n Related work
n Design and implementation

¨A new OS model—horizontal OS model
¨A new OS abstraction—subOS
¨The first prototype—RainForest

n Evaluation
n Conclusion

14

Our method: horizontal OS model

n A new OS model——First isolation, later sharing
¨ Design principles

n Horizontally decomposed OS functions
n Isolation and elasticity of OS instances
n Confined and on-demand state sharing

15

resource management
isolation and elasticity

isolation and sharing

Architecture of the horizontal OS model

Horizontal OS model

n A new OS model
¨ Design principles

n Horizontally decomposed OS functions
¨ “resource provisioning” & “resource management”

16

Discover, monitor, provision
physical resources: resource pool,
allocation/reclaim

Directly drive physical resources,
provide upper-layer abstractions

resource
management

isolation and
elasticity

isolation and
sharing

Horizontal OS model

n A new OS model
¨ Design principles

n Horizontally decomposed OS functions
n Isolation and elasticity of OS instances

17

Each subOS runs as an
independent kernel on
individual resource zones

Creation, destroying,
and resource

adjustment of subOSes

Resources
flow freely

resource
management

isolation and
elasticity

isolation and
sharing

Horizontal OS model

n A new OS model
¨ Design principles

n Horizontally decomposed OS functions
n Isolation and elasticity of OS instances
n Confined and on-demand state sharing

18

Very limited state sharing Create sharing on-demand

Communication, data sharing, …Basic configurations

resource
management

isolation and
elasticity

isolation and
sharing

Content

n Background & motivation
n Related work
n Design and implementation

¨A new OS model—horizontal OS model
¨A new OS abstraction—subOS
¨The first prototype—RainForest

n Evaluation
n Conclusion

19

OS abstractions

n Traditional OS abstractions
¨ Process, thread, container, virtual machine

20

Process (e.g. Linux) subOS

creating and destroying of a process,
resource allocation and reclaim

dynamically create/destroy a subOS,
resource adjustment

inter-process communication(IPC) construct communication channels
among subOS based on shared

memory
parent-child relationship (fork) self-propagation (fork a child subOS)

resource accounting provided by kernel
（proc file system）

coarse-grained accounting in
supervisor, fined-grained accounting

in each subOS
kernel provides sys calls and services supervisor provides APIs

obtain hardware topology and resource
information through system calls

get the information through
each subOS

A new OS abstraction

n Relationship between subOS and others
¨ subOS can run processes, containers, even other OS

structures, like VMM, micro-kernel, etc.
¨ subOSes can be run in VMMs

21

Fig 1. The horizontal OS model

Fig 2. The VMM architecture
A process (or libOS), a full-
featured kernel, container,
virtual machine, etc. A horizontal OS with subOSes

Content

n Background & motivation
n Related work
n Design and implementation

¨A new OS model—horizontal OS model
¨A new OS abstraction—subOS
¨The first prototype—RainForest

n Evaluation
n Conclusion

22

A prototype: RainForest
n Based on the horizontal OS model
n Works on homogeneous SMP platforms

¨ X86, a single Root Complex, global cache consistency
n Architecture of RainForest

¨ supervisor is based on Linux, booted with the hardware
¨ subOS adopts independent monolithic kernel, booted by

supervisor

23

System functions of managing a subOS need to
be re-built because of structural change!IPI: inter-processor interrupt

Design of RainForest

n Shared states are managed
using different policies

¨ Globally shared states: more read, less write
¨ States protected by supervisor: R/W infrequently
¨ Partially shared states: frequent read & write

24

supervisor authorizationlock protection self-defined shared states
in shared memory

Traditional
method

globally shared
more reads

small sharing scope
frequent R/W

globally shared
R/W infrequently

Reduce global
shared states and

participation of
supervisor

Design of RainForest

n Communication based on IPI
¨ FICM: a basic inter-core/subOS
communication channel

n Designed for short, fast messages

25

Read: polling

created on
kernel initiation

OSID is the ID of a subOS

Working mechanism of FICM

A global page：
lock1 to protect
OSID-Communication core list

lock2 to protect
OSDI-VIF MAC list
…...

Globally shared states

Basis of the elasticity of subOS

Design of RainForest

n Boot procedure of a subOS
¨ supervisor assists to RESET the first core(BSP)
¨ Then other cores are booted by subOS itself

26

Protected by supervisor：
Low memory
I/O APIC pin
……

Supervisor

2

1

subOS
core0

core1 core23
4

supervisor memory
1

5

6

7

Centralized control

Design of RainForest

n On-demand state sharing
¨ Based on IPI and shared memory

n subOSes communicate using RFloop
n other split device drivers

27

Split driver in Xen
1. Globally shared event channels
2. VMM managed memory mappings
3. Two-phase memory translation

Frontend backend structure (Xen)

Split driver in RainForest
1. Combination of IPI and polling
2. Self-controlled memory mapping
3. Direct memory translation (VA-PA)

Frontend backend structure (RainForest)

Implementation of RainForest

n A full-featured OS
¨ supervisor and subOS are based on Linux-2.6.32
¨ Most functions implemented as modules, easy to install

or remove
¨ Runs stable in many platforms

n Intel Xeon E5620, E5645, E5-2620, E5-2640, and E7-8870

28

The refactoring efforts based on Linux-2.6.32

Including insertions and
modifications

Core parts: not
much modified

Content

n Background & motivation
n Related work
n Design and implementation

¨A new OS model—horizontal OS model
¨A new OS abstraction—subOS
¨The first prototype—RainForest

n Evaluation
n Conclusion

29

Evaluation and analysis

n Testbed and benchmarks

30

Features evaluated：
subOS performance
tail latency performance
performance isolation
elasticity
scalability
performance of individual components

Systems Kernel Ver. Software Ver.

Modified

Execution entity

Fig 1. Version information of different systems

Processes

Processes
Processes

Containers

VM

Fig 2. Information of two different servers

Fig 3. Benchmarks and main configurations

Benchmarks Ver. Main configurations Sources

Keep full load

Evaluation: performance isolation

31

Heatmap of the performance interference
(degradation percentage of performance) of two
workloads in a single server. x-axis denotes the

interferers, y-axis denotes the victims.

On RainForest,
interference is lower

（Smaller is better）

Workload: 0-11 denotes
different micro benchmarks
covering CPU, cache,
filesystem, and network
Server: 12 cores，32G RAM
OS instances: 2
Every OS instance runs a
workload on

6 cores,16G RAM

Evaluation: performance isolation

n Online services interfered by offline batches

32

Performance(99th percentile latency) degradation of
Search when interfered by Parsec workloads,

comparing to the performance with no interferer

Degradation of
tail latency

performance of
Search on

RainForest is
less than 5%

Workload: Search + Parsec
Server: 12 cores，32G RAM
OS instances: 2
Each OS instance runs a
Search backend or a Parsec
workload on 6 cores,16G RAM

Evaluation: Tail latency
n Tail latency performance of latency critical

workloads

33

Maximum throughputs of
Linux, LXC, Xen, and
RainForest are 400， 350，
350, and 500 (QoS: 200ms)

Workload: Search
Server: 12 cores，32G RAM
OS instances: 2
Each OS instance runs a
backend server of Search on

6 cores,16G RAM

CPU utilizations:
59.8%, 58.0%, 55.7%, and
69.7% (QoS: 200ms)

（smaller is better）

（Larger is better）

RainForest
(a) 99th percentile latency

(b) CPU utilization

Evaluation: cost of elasticity

n Cost of resource adjustment

34

Table 1. Cost of resource adjustment in each system (in seconds).

Evaluation: elasticity

n Make cores adjust

35

Fig 1. Tail latency performance of Search co-located with Parsec

Large fluctuations on
Linux and LXC Large tail latency

and small
fluctuation on Xen

Small
fluctuation on
RainForest

Fig 3. Performance of Search and Parsec when co-located
0
10
20
30
40
50
60
70

0 2 4 6 8 10 12 14 16 18 20 22
Time (Hour)

R
eq

ue
st

s
/s

Fig 2. load v.s. time

Similar throughputSmallest tail latency
on RainForest

PARSEC runs faster than LXC and
Xen by11.5% and 67.9%

Workload: Search + Parsec
Server: 12 cores，32G RAM
OS instances: 2
Each OS instance runs a Search
backend or a Parsec workload
initially on 6 cores,16G RAM

Evaluation: scalability

n Throughput & tail latency

36

increase slowly
Throughput of system call mmap with

increasing cores (larger is better)

RainForest gets best
scalability

Workload: Wiil-It-Scale; memcached
Server: 40 cores，1T RAM
OS instances: 4
Each OS instance runs

on 10 cores,250G RAM

Tail latency of memcached with
increasing cores (smaller is better)

Content

n Background & motivation
n Related work
n Design and implementation

¨A new OS model—horizontal OS model
¨A new OS abstraction—subOS
¨The first prototype—RainForest

n Evaluation
n Conclusion

37

Conclusion

n Low resource utilization and emerging hardware
calls for the structure change of the OS
¨ The performance interference & scalability problems

n We propose a new horizontal OS model with a
new OS abstraction
¨ First isolation, later sharing
¨ Three principles

n We build the prototype based on Linux and
evaluation results show it surpasses Linux, Linux
Containers, and Xen in performance isolation and
scalability.
¨ Source code will soon be available

38

Any questions?

Backup

In-memory computing

• Performance of Spark

41

RainForest相对于Linux、LXC	和Xen	的最大加速
比分别达到1.64x、1.69x	和1.74x

测试程序：Spark典型负载
服务器资源：40核，1T RAM
系统实例数：4个
每实例资源：10核、250G RAM

Spark框架上各种典型负载的性能（越小越好）

RFloop带来的加速比：
13%~32%

