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  Motivation: Memory is the Bottleneck

2

local  
access

remote  
access

core core

cache

memory

core core

cache

memory

QuickPath

HyperTransport

NUMA: Non-Uniform Memory Access



State of the Arts
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simulation methods
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deep insights
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weaknesses:!
• 2-5x overhead!
• not real machines



Hardware Address Sampling

• Features of address sampling 
• sample memory-related events (memory accesses, NUMA events) 
• capture effective addresses  
• record precise IP of sampled instructions or events 

•  Support in modern processors 
• AMD Opteron 10h and above: instruction-based sampling (IBS) 
• IBM POWER 5 and above: marked event sampling (MRK) 
• Intel Itanium 2: data event address register sampling (DEAR) 
• Intel Pentium 4 and above: precise event based sampling (PEBS) 
• Intel Nehalem and above: PEBS with load latency (PEBS-LL) 

• Efficient memory measurement (SC’13) 
• code-centric analysis 
• data-centric analysis
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Code-centric vs. Data-centric
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• Code-centric attribution 
– problematic code sections 

• instruction, loop, function 
!

• Data-centric attribution 
– problematic variables 

• static/heap variables

5

1: #pragma omp parallel for num_threads(4)	


2: for (i = 0; i < n; i++) {	


3:    for(j = 0; j < n; j++) {	


4:        for(k = 0; k < n; k++) {	


5:            A[i, j, k] = A[i, j, k,] + B[j, i, k] + C[k, j, i];	


6:        }	


7:    }	


8: }

line 5: 100% latency

array A:	


line 5: 1% latency	



array B	


line 5: 10% latency	



array C	


line 5: 89% latency	



code-centric profiling data-centric profiling
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Combining code-centric and data-centric attribution 
 provides additional insight



    Attributing Samples
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Aggregating Profiles
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         LULESH on Platform of 8 NUMA Domains
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allocation call path call site of allocation

z accounts for 
7.7% remote accesses

call paths for 
accesses

remote accesses

heap data:68% 
remote accesses

interleave pages of z 
across NUMA nodes	


13% improvement in 

running time

z is allocated in a 
NUMA domain but 
accessed by others



        Existing Measurement is Inadequate

• Data collection + attribution ≠ optimal optimization 
– know problematic data objects but not know why 
– need more insights for optimization guidance 

• Challenges for address sampling 
– very sparse memory access samples 
– not monitoring continuous memory accesses 

• Opportunities for address sampling 
– effective addresses: analyze memory access patterns 
– data sources: understand where inefficiencies come from 
– latency: derive new latency metrics to quantify inefficiencies.

9



         Beyond Data Collection and Attribution

• Published work 
– HPCToolkit-NUMA: analyzing NUMA bottlenecks (PPoPP’14) 
– ArrayTool: guiding array regrouping for better locality (PACT’14) 
– ScaAnalyzer: identifying memory scaling issues (SC’15) 
– StructSlim: guiding structure splitting (CGO’16) 
– Cheetah: detecting false sharing (CGO’16) 
– SMTAnalyzer: identifying SMT-aware optimization (HPDC’16)
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        Interleaved Allocation is NOT Always Best
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Memory Access Pattern Analysis

• Online data collection 
!
!
!
!
!
!
!
!
!

• Offline analysis 
– merge [min, max] intervals along call paths 
– plot [min, max] for each thread 

• can be for any context, any variable
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         LULESH on Platform of 8 NUMA Domains
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Block-wise allocation: 25% faster running time	


Interleaved allocation: 13% faster running time
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         Beyond Data Collection and Attribution

• Published work 
– HPCToolkit-NUMA: analyzing NUMA bottlenecks (PPoPP’14) 
– ArrayTool: guiding array regrouping for better locality (PACT’14) 
– ScaAnalyzer: identifying memory scaling issues (SC’15) 
– StructSlim: guiding structure splitting (CGO’16) 
– Cheetah: detecting false sharing (CGO’16) 
– SMTAnalyzer: identifying SMT-aware optimization (HPDC’16)
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The Problem of Scaling
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Quantifying Scaling Loss

• Quantifying scaling loss with execution time (parallel efficiency) 
– it is straightforward with expectation: the same program with the same 

workloads  
    T2n  =  Tn/2 

• T2n  =  Tn/2: perfect scaling — expected 
• T2n  >  Tn/2: scaling with loss 
• T2n  <  Tn/2: superlinear scaling 
!

– execution time cannot help us focus on memory scaling 
• can we have an expectation for the memory performance for scaling?
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Memory Scaling Expectation

17

core core

L3 cache

memory

core core

L3 cache

memory

QuickPath

HyperTransport

L1/L2 L1/L2 L1/L2 L1/L2

The average latency of memory accesses 
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Derived Metrics

• Average latency lp over all memory accesses on p cores 
  expectation: scaling factor =  lp / lq = 1 (p > q) 

– if lp / lq ≫ 1 
• there is significant scaling loss in memory 

– which memory layer has the most memory scaling loss 
– which part of the source code has the memory scaling loss
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          Root Cause Analysis for Memory Scaling

• Which memory layer causes the scaling loss? 
– private layers: L1, L2 caches 
– shared layers: L3 cache and main memory 
– NUMA layers: remote L3 cache and remote memory 
!
!
!

• Which data objects and memory accesses cause the scaling loss? 
– problematic arrays with problematic accesses 
!

19

Provide optimization guidance: eliminating false sharing, 
mitigating contention, or addressing NUMA bottlenecks

Pinpointing problematic source code for optimization: high-
level feedback for programmers

ScaAnalyzer extends HPCToolkit: 
lightweight analysis



          Differential Analysis on Aggregate Profiles
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    IRSmk: An Important DOE Benchmark
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NUMA layer impedes the scalability

allocation call path



Conclusions and Future Work

• Hardware address sampling 
– widely supported in modern architectures 
– powerful in monitoring memory behaviors 
– further analysis of the samples provides deeper performance insights 

• On-going work 
– automatic page migration for NUMA architectures 
– program optimization for heterogenous memories 

• with memif support (goto memif talk at ASPLOS) 

• Future work: profilers for Big Data workloads 
– understand memory contention, memory usage, and SMT effects 
– multiple programs co-running 
– go beyond code-centric and data-centric analysis
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Backup Slides
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         UMT2013 on Quad-socket POWER7 Node

18.2% of remote accesses

sample off-chip 
accesses

allocated in one domain	


accessed by everyone	



self%STime 
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Optimize self%STime for UMT2013
address-centric analysis for self%STime
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