
Leveraging Hardware Address
Sampling for Memory Performance

Insights

Xu Liu
!

Department of Computer Science
College of William and Mary

xl10@cs.wm.edu

BPOE, April 2016

mailto:xl10@cs.wm.edu

 Motivation: Memory is the Bottleneck

2

local
access

remote
access

core core

cache

memory

core core

cache

memory

QuickPath

HyperTransport

NUMA: Non-Uniform Memory Access

State of the Arts

3

simulation methods

measurement methods

deep insights

low overhead

low overhead with deep insights

deep insights with low overhead

weaknesses:!
• 2-5x overhead!
• not real machines

Hardware Address Sampling

• Features of address sampling
• sample memory-related events (memory accesses, NUMA events)
• capture effective addresses
• record precise IP of sampled instructions or events

• Support in modern processors
• AMD Opteron 10h and above: instruction-based sampling (IBS)
• IBM POWER 5 and above: marked event sampling (MRK)
• Intel Itanium 2: data event address register sampling (DEAR)
• Intel Pentium 4 and above: precise event based sampling (PEBS)
• Intel Nehalem and above: PEBS with load latency (PEBS-LL)

• Efficient memory measurement (SC’13)
• code-centric analysis
• data-centric analysis

4

Code-centric vs. Data-centric

5

• Code-centric attribution
– problematic code sections

• instruction, loop, function
!

• Data-centric attribution
– problematic variables

• static/heap variables

5

1: #pragma omp parallel for num_threads(4)	

2: for (i = 0; i < n; i++) {	

3: for(j = 0; j < n; j++) {	

4: for(k = 0; k < n; k++) {	

5: A[i, j, k] = A[i, j, k,] + B[j, i, k] + C[k, j, i];	

6: }	

7: }	

8: }

line 5: 100% latency

array A:	

line 5: 1% latency	

array B	

line 5: 10% latency	

array C	

line 5: 89% latency	

code-centric profiling data-centric profiling

T4

Combining code-centric and data-centric attribution 
 provides additional insight

 Attributing Samples

6

heap allocated
variables

variable
name

static 	

variables

... ...
allocation path

malloc

variable range

0x0 0xff

data-centric attribution

code-centric attribution

7

Aggregating Profiles

heap allocated
variables

...
allocation path

malloc

heap allocated
variables

...
allocation path

malloc

heap allocated
variables

...
allocation path

malloc

...
merge

 LULESH on Platform of 8 NUMA Domains

8

allocation call path call site of allocation

z accounts for
7.7% remote accesses

call paths for
accesses

remote accesses

heap data:68%
remote accesses

interleave pages of z
across NUMA nodes	

13% improvement in

running time

z is allocated in a
NUMA domain but
accessed by others

 Existing Measurement is Inadequate

• Data collection + attribution ≠ optimal optimization
– know problematic data objects but not know why
– need more insights for optimization guidance

• Challenges for address sampling
– very sparse memory access samples
– not monitoring continuous memory accesses

• Opportunities for address sampling
– effective addresses: analyze memory access patterns
– data sources: understand where inefficiencies come from
– latency: derive new latency metrics to quantify inefficiencies.

9

 Beyond Data Collection and Attribution

• Published work
– HPCToolkit-NUMA: analyzing NUMA bottlenecks (PPoPP’14)
– ArrayTool: guiding array regrouping for better locality (PACT’14)
– ScaAnalyzer: identifying memory scaling issues (SC’15)
– StructSlim: guiding structure splitting (CGO’16)
– Cheetah: detecting false sharing (CGO’16)
– SMTAnalyzer: identifying SMT-aware optimization (HPDC’16)

10

11

 Interleaved Allocation is NOT Always Best

11

core1 core2

core3 core4

core1 core2

core3 core4

core1 core2

core3 core4

core1 core2

core3 core4

domain 1 domain 2 domain 3 domain 4

centralized allocation: poor

interleaved allocation: sub-optimal

co-locate data with computation: optimal

Goal: identify the best data distribution for a program

allocation 1

allocation 2

allocation 3

12

Memory Access Pattern Analysis

• Online data collection
!
!
!
!
!
!
!
!
!

• Offline analysis
– merge [min, max] intervals along call paths
– plot [min, max] for each thread

• can be for any context, any variable

12

array A

domain1

[min1, max1]

[min2, max2]

[min, max]

T1 T2 T3 T4

allocate A blockwise to different domains

domain2 domain3 domain4

balanced allocation + maximum locality

array A

min max

[min, max] per sampled
memory access

0x00 0xff

address

13

 LULESH on Platform of 8 NUMA Domains

call path 	

allocates z

call paths	

access z

special metrics common metrics

Block-wise allocation: 25% faster running time	

Interleaved allocation: 13% faster running time

z accounts for 7.7% of
remote accesses

domain	

0

domain	

7

 Beyond Data Collection and Attribution

• Published work
– HPCToolkit-NUMA: analyzing NUMA bottlenecks (PPoPP’14)
– ArrayTool: guiding array regrouping for better locality (PACT’14)
– ScaAnalyzer: identifying memory scaling issues (SC’15)
– StructSlim: guiding structure splitting (CGO’16)
– Cheetah: detecting false sharing (CGO’16)
– SMTAnalyzer: identifying SMT-aware optimization (HPDC’16)

14

The Problem of Scaling

15

Ts/pTp

Quantifying Scaling Loss

• Quantifying scaling loss with execution time (parallel efficiency)
– it is straightforward with expectation: the same program with the same

workloads
 T2n = Tn/2

• T2n = Tn/2: perfect scaling — expected
• T2n > Tn/2: scaling with loss
• T2n < Tn/2: superlinear scaling
!

– execution time cannot help us focus on memory scaling
• can we have an expectation for the memory performance for scaling?

16

Memory Scaling Expectation

17

core core

L3 cache

memory

core core

L3 cache

memory

QuickPath

HyperTransport

L1/L2 L1/L2 L1/L2 L1/L2

The average latency of memory accesses
should be at least the same with perfect scaling

Derived Metrics

• Average latency lp over all memory accesses on p cores
 expectation: scaling factor = lp / lq = 1 (p > q)

– if lp / lq ≫ 1
• there is significant scaling loss in memory

– which memory layer has the most memory scaling loss
– which part of the source code has the memory scaling loss

18

 Root Cause Analysis for Memory Scaling

• Which memory layer causes the scaling loss?
– private layers: L1, L2 caches
– shared layers: L3 cache and main memory
– NUMA layers: remote L3 cache and remote memory
!
!
!

• Which data objects and memory accesses cause the scaling loss?
– problematic arrays with problematic accesses
!

19

Provide optimization guidance: eliminating false sharing,
mitigating contention, or addressing NUMA bottlenecks

Pinpointing problematic source code for optimization: high-
level feedback for programmers

ScaAnalyzer extends HPCToolkit:
lightweight analysis

 Differential Analysis on Aggregate Profiles

20

heap allocated
variables

...
allocation path

malloc

... ...

heap allocated
variables

...
allocation path

malloc

... ...

N cores 2N cores

difference

average latency
20 cycles

average latency
50 cycles

 IRSmk: An Important DOE Benchmark

21

16 cores 32 cores

NUMA layer impedes the scalability

allocation call path

Conclusions and Future Work

• Hardware address sampling
– widely supported in modern architectures
– powerful in monitoring memory behaviors
– further analysis of the samples provides deeper performance insights

• On-going work
– automatic page migration for NUMA architectures
– program optimization for heterogenous memories

• with memif support (goto memif talk at ASPLOS)

• Future work: profilers for Big Data workloads
– understand memory contention, memory usage, and SMT effects
– multiple programs co-running
– go beyond code-centric and data-centric analysis

22

Backup Slides

23

24

 UMT2013 on Quad-socket POWER7 Node

18.2% of remote accesses

sample off-chip
accesses

allocated in one domain	

accessed by everyone	

self%STime

25

Optimize self%STime for UMT2013
address-centric analysis for self%STime

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

303 6 10 13 16 20 23 26

T1 T2 T3 T4 T1 T2 T3 T4 ...
self%STime’s address space

optimization: let each thread
initialize its own data

result: all threads have data
locally -- 7% faster

multiple pages

address

