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Abstract
This study presents a principled empirical evaluation of image
storage systems for training deep neural networks. We employ the
Caffe deep learning framework to train neural network models for
three different data sets, MNIST, CIFAR-10, and ImageNet. While
training the models, we evaluate five different options to retrieve
training image data: (1) PNG-formatted image files on local file
system; (2) pushing pixel arrays from image files into a single
HDF5 file on local file system; (3) in-memory arrays to hold the
pixel arrays in Python and C++; (4) loading the training data into
LevelDB, a log-structured merge tree based key-value storage; and
(5) loading the training data into LMDB, a B+tree based key-
value storage. The experimental results quantitatively highlight the
disadvantage of using normal image files on local file systems to
train deep neural networks and demonstrate reliable performance
with key-value storage based storage systems. When training a
model on the ImageNet dataset, the image file option was more
than 17 times slower than the key-value storage option. Along
with measurements on training time, this study provides in-depth
analysis on the cause of performance advantages/disadvantages
of each back-end to train deep neural networks. We envision the
provided measurements and analysis will shed light on the optimal
way to architect systems for training neural networks in a scalable
manner.

1. Introduction
Deep learning methods are under the spotlight primarily because
of their ability to find hierarchical patterns in high-dimensional
data [26]. Exemplary problems that favor deep learning are vi-
sual object recognition in images [33] and speech recognition in
wavelets [17]. Training these neural network models over large
datasets achieved a break-through in machine learning and artifi-
cial intelligence, which often requires significant effort to architect
the system [5, 7, 11].

When using popular machine learning algorithms, including
deep learning algorithms, a common practice is to use existing plat-
forms, instead of developing new software for each algorithm [21].
Deep learning is not an exception. There have been several ef-
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forts to develop dedicated systems for training deep learning mod-
els [5, 11]. Caffe [19], Theano [2], and Torch [8] are just a short list
of popular general purpose deep learning platforms. Google has
recently revealed that they developed a general purpose machine
learning platform, including deep learning [13]. After choosing the
option of platforms, another important decision should be done:
where to store training data.

Considering specifically image data, we have multiple options
to store the datasets: (1) store image files individually on a file
system; (2) store a few aggregated files in a file system by putting
multiple images into a file; (3) store images as values (or records)
in a key-value storage (or relational database). When designing
systems for training deep neural networks, prior studies [5, 11]
have discussed data parallelism, which can be exercised with any
of storage options. We hypothesize that the combination of the
characteristics of the data sets often used in conjunction with deep
learning will pose a unique challenge for choosing data storage
options. In order to train a deep neural network model on image
data, a large number of small images must be read, and the entire
dataset must be iterated over many times.

Potential bottlenecks to store large collections of small files
have been pointed out across the file system community [3, 30],
but none of these studies specifically considered the problem in
the context of deep learning. Hence, the scope of this study is to
analyze the bottlenecks for deep neural network models to read
training image samples from a storage backend, so as to validate
our hypothesized research question. The use of a GPU dramatically
reduces the system requirements to train a specific model over a
particular data set in the same amount of time [7]. Thus, our study
specifically considers the case where a GPU is utilized for training
the model.

Our analysis results demonstrate that our hypothesis is true. We
observe up to 17x slower training time when we store training im-
ages as individual image files than when we store training images as
values in a key-value storage. This pattern occurs regardless of the
scale of the datasets for either small MNIST set, or large ImageNet
set. When the data set is small and the training model is simple,
slower training still can be neglected; for instance, 20 seconds ver-
sus 400 seconds. However, for large data sets like ImageNet, train-
ing time can vary more dramatically: an hour or a day, depending
on storage opstions. Such a big difference can alter the ability for
researchers to explore deep learning models.

Considering the variety of deep neural network algorithms and
the explosiveness of hyperparameters of any deep neural network
models (the number of training weights, the way of stacking up
neural network, etc.), researchers would like to train as many mod-
els as possible in order to find a model close to the best fit to given
training data. If training a deep neural network model takes a day,
researchers may explore only a handful of choices for either algo-
rithms or hyperparameters of the chosen algorithm. In other words,



training deep neural nets can be a delicate art to manage, or a black
magic [20]. In order to overcome this situation, system designers
should consider the most efficient way to utilize every bit of com-
puting power, for which this study will provide a valuable insight.

The rest of this paper is organized as follows: § 2 overviews
convolutional neural networks as an example of deep learning algo-
rithms and presents prior work relevant to this study. § 3 describes
our empirical evaluation results, along with the description of our
evaluation environment. § 4 concludes this study, suggesting the
future directions.

2. Backgrounds
This section describes relevant related work and backgrounds to
understand the rest of this study. Among the various deep learning
methods, this study chose convolutional neural networks (CNNs)
to construct deep neural network models. Thus, CNNs will be the
focus of this section.

2.1 Related work
This section describes two categories of prior work to this study:
(1) clean and flexible framework for training large deep neural
networks, with their computer architectural issues; and (2) backend
image storages that considered in this study. Caffe [19] provides
data scientists with a clean and modifiable framework for state-
of-the-art deep learning algorithms and a collection of reference
models. The framework is a C++ library with Python and Matlab
bindings for training and deploying general purpose convolutional
neural networks and other deep models on commodity hardware.
Caffe can process 40 million images on a day on a single NVIDIA
K40 GPU (∼ 2.5 ms per image). Similar software packages are
Theano [2], Torch7 [8], and TensorFlow [13].

Deep neural networks have been a hot topic in recent years.
Since 2012, models trained by large scale deep neural networks
have dominated the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), and a recent Google study reports 3.5% top-
5 error, using their open-source machine learning system Tensor-
Flow [33]. Training of large deep neural networks has been made
possible by utilizing an unprecedented scale of computational re-
sources such as a large number of CPU cores [5, 11] and a large
number of GPUs [7].

Consequently, the computer architecture communities have be-
gun paying attention to deep learning algorithms [15]. However,
the aforementioned study focused on the service of trained mod-
els, instead of efficient training. As the ability to train large neural
networks is at the center of the popular adoption of deep neural net-
works, this study focuses on the efficient training, with the empha-
sis of utilizing storage backends to feed image data. In principal,
deep learning algorithms repeatedly read image data from storage
systems until the weights converge, which results in a system that
must ready each image many times. Thus, the choice of storage
backends could be critical to efficiently feeding the input image
data into the training model.

Let us review back-end storage systems considered in this study.
In this study, we utilized two in-memory key-value storages, Lev-
elDB [12] and LMDB [6], along with two file system based ap-
proaches, HDF5 [16] and raw image files. In addition, we consid-
ered memory buffers to hold image data in two different languages,
Python and C++.

Key-value systems are widely used to store and retrieve sim-
ple information, where complex relational operations upon the data
(e.g. join) are not required, such as graph analysis [10] and in-
stant message system [14]. LevelDB is a key-value storage library
written at Google that provides an ordered mapping from string
keys to string values. It uses log-structured merge tree and stores
each row in a compressed format. Write operations go straight

Figure 1. Example images from the MNIST dataset.

into a log/memtable, which is stored in memory. This operation
makes log-structured merge tree, which is also used in HBase [1],
optimized for write operations [4, 9, 32]. If the memtable grows
large, it flushes into a 2MB string sorted table, sstable. As the
level gets deeper, the table size becomes larger and read operations
might involve accessing several levels. LMDB [6] is a B+tree-based
database management library modeled loosely on the BerkeleyDB
API, but much simplified. The entire database is exposed in a mem-
ory map, and all data fetches return data directly from the mapped
memory, so no malloc’s or memcpy’s occur during data fetches. As
reported in a microbenchmark result [32], LMDB is optimized for
read operations.

Using file systems to store and share image data is a common
practice as written in articles on Facebook’s photo sharing sys-
tems [3, 18]. It eliminates the efforts to extract, transform, and
load the uploaded image files into another formats and systems to
be shared. Another distinctive characteristic of image data is that
they are typically write-once and read-many data. Even when we
resize the image, we keep the original copy and store the resized
copies as different files. However, the downside is that the size of
individual images is not large, which burdens file systems without
special treatment [3, 30]. A lesson from Facebook’s photo shar-
ing is to archive multiple images into a single large file in order to
limit the total number of files in a file system, which will provide
efficient file system operations, e.g. caching file system metadata
and caching the file contents. In the same line, we consider using
HDF5 file format [16], a widely used format by scientific commu-
nity, where we can put multiple images into a single file, and APIs
for HDF5 format allow us to retrieve individual images as if we
were accessing them from a database.

2.2 Convolutional neural network
Convolutional neural networks (CNNs) [26] are a class of deep
learning models used primarily in supervised settings, which have
been successfully scaled to networks containing over 2 billion
connections [5]. CNNs consists of one or more convolutional layers
(often with a subsequent pooling step) and then followed by one
or more fully connected layers as in a standard multilayer neural
network. The architecture of a CNN is designed to take advantage
of the spatial structure of an input image. This is achieved with local



Figure 2. The first layer of a convolutional neural network with
pooling [35]. Units of the same color have tied weights and units of
different color represent different filter maps.

connections and tied weights followed by some form of pooling
which provides translation invariant features. Another benefit of
CNNs is that they are easier to train and have fewer parameters than
fully connected networks with the same number of hidden units.

Let us introduce a convolutional layer. The input to a convolu-
tional layer is a m×m× r image where m is the height and width
of the image (images used are typically square) and r is the num-
ber of channels, e.g. an RGB image has r = 3. The convolutional
layer will have k kernels (or filters) of size n × n × q, where n
is smaller than the dimension of the image and q is typically equal
to the number of channels r in output of the layer below. The ker-
nels are convolved with the image to produce k feature maps of
size b(m − n)/sc + 1 in each spatial dimension. Each kernel can
be convolved with the image using a stride size, s, which is used
to reduce the size of the feature map by skipping positions in the
input. The stride is often set to 1, which results in feature maps of
size m− n+ 1.

Each map is then subsampled typically with mean or max pool-
ing over p × p regions using a stride, s, where p ranges between
2 for small images (e.g. MNIST [25]) and is usually not more
than 5 for larger inputs. This results in an feature maps of size
d(m − p)/se + 1. Either before or after the subsampling layer an
additive bias and nonlinearity (typically ReLU or sigmoidal) is ap-
plied to each feature map. Figure 2 illustrates a full layer in a CNN
consisting of convolutional and subsampling sublayers. Units of the
same color have tied weights. After the convolutional layers there
may be any number of fully connected layers, otherwise known as
Inner Product layers. The densely connected layers are identical to
the layers in a standard multilayer neural network.

Let us calculate the number of parameters (weights) in a con-
volutional neural network from the trained model for MNIST data
set in this study, shown in Figure 3. In this feature, the first convo-
lutional layer has 20 feature maps, each of which generates a 2D
output with the size of ×(28− 5 + 1)× (28− 5 + 1). The output
of the first convolutional layer is subsampled by a max pool layer,
which samples the max value in 2 × 2 area without overlapping
(we have the stride size of 2). Thus, the first max pool produces 20
feature maps, each of which has the size of 12× 12. Repeating the
same procedure, after the second max pool layer, we will have 50
feature maps, each of which will have the size of 4 × 4. After that
we have a fully connected Inner Product layer, which has 500 fea-
ture maps. These maps are the input to the second fully connected
layer, ip2, which outputs 10 feature maps. The value in each 10 fea-

Table 1. System specification
Parameter Value
CPU cores 8
Memory 16 GB
Local storage 1.1 TB HDD
GPU NVIDIA Titan X (12GB RAM/3072

CUDA cores)
CUDA ver. 7.5
cuDNN yes (ver. 3.0.07)
BLAS library ATLAS
File system ext4

Table 2. Training data sets
data set storage option size

MNIST

LevelDB 15MB
LMDB 59MB
pymem 14MB
cppmem 180MB
HDF5 180MB (a single file)
image files 238MB(60,000 files)

CIFAR10

LevelDB 148MB
LMDB 197MB
pymem 530MB
cppmem 586MB
HDF5 587MB (a single file)
image files 200MB (50,000 files)

ImageNet
LevelDB 222GB
LMDB 240GB
image files 143GB (1,281,167 files)

ture maps can be used to categorize the digits, ranges from 0 to 9,
written in each image.

When we address the number of weights (or parameters), the
first and the second convolutional layers have 20× 5× 5× 1+ 20
and 50 × 5 × 5 × 20 + 50 different weights, respectively, since
the connections between neurons in the same feature map share
weights and each kernel has a bias weight. The third layer has
500× 4× 4× 50+ 500 different weights as it is a fully connected
layer and the weights are not shared across connections, and the
fourth layer has 10 × 500 + 10 weights. Hence, we have a total
of 431,080 weights (or parameters) in this model. Note that the
relation between the number of parameters and the accuracy is
not linear. Therefore, a larger trained model does not automatically
guarantee the higher accuracy and the trained model in this study
may or may not produce the best accuracy for given data sets.

3. Evaluation
This section describes the empirical evaluation of the trade-offs
between back-end storage systems as image storage systems for
training deep neural networks. System specification of the tested
system is as shown in Table 1. We employed Caffe [19] in order to
obtain deep neural network models. As it is well-known that GPUs
are more efficient than CPUs to train deep neural networks [7], we
trained the model on GPU in this study. First, we measured training
times and system resource utilization (CPU, GPU, memory, and
disk) under warm cache condition. Then, we performed the same
experiments with cold cache by dropping all the data pages and file
system metadata ( dentries and inode information) using following
commands,

sync && echo 3 > /proc/sys/vm/drop caches ,
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Figure 3. The trained network architecture for MNIST data set, which contains 431,080 weights. The data set consists of 60,000 28 × 28
pixel grayscale images.
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Figure 4. Average training time for MNIST. Error bars represent
standard deviations.

For each dataset, we employed different neural network models in
order to represent the training of reasonably accurate models for
each data set. For instance, with the MNIST data set, we trained
the model with samples from 60,000 images for 10,000 iterations,
obtaining 99.04% of accuracy against 10,000 images of test data
set.

3.1 MNIST
The MNIST dataset [25] is a collection of handwritten digits (0-9).
Figure 1 shows examples in this data set. The images are cropped
and scaled to fit within a 28 × 28 pixel image. The images are
grayscale and the majority of pixels are approximately black or
white as the original images before cropping and scaling were black
and white. There are 60, 000 images designated as training images,
and 10, 000 images are designated as test images. This dataset was
used in the early research in deep learning and is often used to
quickly evaluate new ideas. The network used for this dataset is
LeNet [26]. This network model is comprised of two convolutional
layers, each followed by a max pooling layer, and two inner product
layers with a ReLU layer between them. Complete details for the
network are shown in Figure 3.

We measured the training times with different back-end storage
systems to train the same network configuration. As shown in Fig-
ure 4, two key-value storage systems (LevelDB and LMDB) and
in-memory options (pymem and cppmem) showed similar training
time, but file based options (image and HDF5) showed longer av-
erage training time than other options. The option of image files
demonstrated serious performance difference, depending on cache
condition. When we warm-up the cache for the image files, the
average training time was 20.40 sec, with the standard deviation
of 0.070, which was similar to other options. However, when the
cache was cold, the average training time was 427.16 sec, with
the standard deviation of 129.3. The major contributor of this phe-
nomenon is the inefficient support from file systems.

Using the image file option, each training sample is a 28 × 28
PNG formatted file, each of which is of a size just less than 300
bytes. We used a total of 60,000 such files for training the neural
network. File systems provides caching mechanisms, but it caches
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Figure 5. Resource utilization for MNIST

blocks within a file since file system cannot judge if another file in
the same directory can be accessed or not. As a result, as shown
in Figure 5, under cold cache condition, training with image files
spent the majority of time in waiting for I/O operations, resulting
extremely low GPU utilization. The statistics on the memory uti-
lization and block device read support the hypothesis that this I/O
wait does not stem from a large data set size.

When the data is cached, as the total footprint of MNIST is
small enough to be cached in the system memory, all back-ends
perform similar to each other. With HDF5 option, however, the
training time was 28% longer than the fastest option, cppmem,
independently of cache condition. We hypothesize that the increase
in training time when using the HDF5 format is a result of two
factors: (1) additional processing to interpret the file format and
(2) increased size for the same training data, 180MB, which is up
to 12 times larger than other options (refer to Table 2), although
not larger than storing as individual image files. When we looked
into resource utilization, we confirm that HDF5 used the largest
memory footprint during the model training, which resulted in
slightly less efficiency in utilizing GPUs, as shown in Figure 5.
As was observed with the MNIST dataset, we cannot find clear
correlation between the training times and block reads from storage
system, which might be attributed to the small data set size and



Figure 6. Example images from the CIFAR-10 dataset.
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Figure 7. Average training time for CIFAR10. Error bars represent
standard deviations.

the bandwidth of the tested system is around 600MB/sec, which
supports the block reads well.

3.2 CIFAR10
The CIFAR-10 dataset [23] is a collection of 60, 000 labelled im-
ages from the 80 Million Tiny Images dataset [34]. The images
32 × 32 pixel color images of 10 unique classes. There are 5, 000
images designated as training images for each class, and 1, 000 im-
ages from each class are designated as test images. This dataset is
used widely in deep learning papers and is often used to quickly
evaluate new ideas. The network used for this dataset is the fastest
network from Alex Krizhevsky’s cuda-convnet work [22]. This net-
work model is comprised of three convolutional layers, each fol-
lowed by a pooling layer, and two inner product layers. Complete
details for the network are shown in Figure 9.

As with MNIST, we measured the training times with different
back-end storage systems to train the network shown in Figure 9.
The trend of training time to classify image categories in CIFAR-10
data set is shown in Figure 7. Overall, the trend is similar to MNIST
cases. Two key-value storage systems (LevelDB and LMDB) and
in-memory options (pymem and cppmem) showed similar training
time, but file based options (image and HDF5) showed longer
average training time than other options. The option of image files
demonstrated serious performance deviation, depending on cache
condition as with MNIST data set. When we warmed up the cache
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Figure 8. Resource utilization for CIFAR-10

for the image files, the average training time was 53.29sec, which
was only 40% slower than then fastest option (LMDB). However,
when the cache was cold, the average training time was 264.81
sec, which was 6.8 times slower than the fastest option (LevelDB)
under the same condition. Again, the major contributor of this
phenomenon is the inefficient supports from file systems.

Using the image file option, each training sample is a 32 × 32
PNG formatted color image file, each of which is of a size less than
4KB. We used a total of 50,000 of such files for training the neural
network. As with MNIST data set, we can attribute the serious per-
formance deviation of image file option to the inefficiency of file
systems that we have employed. However, since the total footprint
of CIFAR-10 is also small enough to be cached in the system mem-
ory, all back-ends perform similar to each other when the cache is
warmed up. Readers may refer to Table 2 for the storage footprint of
CIFAR-10 data set for each storage option. The inefficiency of file-
based approaches is highlighted also by HDF5 option in CIFAR-
10 data set cases. HDF5 option shows the second longest training
time under both warm cache condition and cold cache condition,
though it does not show dramatic performance difference accord-
ing to cache condition, 46.86 seconds for warm cache and 51.67
seconds for cold cache.

Interestingly, key-value storage based options, LevelDB and
LMDB, provided the shorter average training time than in-memory
options. Key-value storage based option showed around 6 per-
cent higher CPU utilization, which might be required to support
database operations. However, Figure 8 (a) shows lower iowait
time under cold cache condition, as for both LevelDB and LMDB,
which made less deviation of average training time depending on
the cache condition. For instance, the average training times of Lev-
elDB were 38.06 seconds under the warm cache and 38.68 seconds
under the cold cache. In contrast, cppmem showed 4.5 seconds of
differences in average training time, depending on the cache condi-
tion.
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Figure 10. Example images from the ImageNet dataset.
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Figure 11. Average training time for ImageNet. Error bars repre-
sent standard deviations.

3.3 ImageNet
The ImageNet competition dataset [31] is a collection of images
organized according to the WordNet hierarchy [28]. The images
are of various sizes and are typically rescaled to a 256× 256 pixel
image for use. There are 1.28M images designated as training im-
ages, and 50, 000 images are designated as test images. This dataset
is the most widely used benchmark for deep learning today. The
network used for this dataset is a modified AlexNet model [24].
This network model is comprised of five convolutional layers, three
max pooling layers, and three inner product layers. Complete de-
tails for the network are shown in Figure 13.
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Figure 12. Resource utilization for ImageNet

We trained the network shown in Figure 13, which is also known
as caffe-net included in Caffe. We modified the total number of it-
erations from 45,000 to 15,000 in order to reduce the training time
for benchmark purposes. The storage space footprint to store Ima-
geNet data is shown in Table 2, around 200GB for key-value sys-
tems, and 143 GB for image file cases. We stored image files in
PNG format. As databases store additional metadata information
than pixel-arrays, their storage footprints were higher than image
file options. For the ImageNet dataset, we did not experiment with
HDF5 since the reference implementation in Caffe framework re-
quired to perform cropping operations on image data, which is not
supported for the HDF5 option. In addition, we were not able to
experiment with cppmem and pymem options as the data set size
exceeds several folds of the memory capacity used in this study.

From experiments with ImageNet data set, we clearly confirm
that the use of raw image files seriously slows down the model
training. For smaller data sets like MNIST and CIFAR-10, we can
easily warm up the cache even with the image file option. However,
as with ImageNet, when the data set size is multiple times larger
than the memory capacity, warming up the cache to achieve perfor-
mance gain was nearly impossible, shown in Figure 11. When we
feed the training samples into the training model, we seek the be-
ginning of the batch and sequentially fetches following image data,
also known as mini-batch training for stochastic optimization [27].
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Due to such data feeding operations, caching individual files are not
sufficient when the data size is huge. However, key-value systems,
where keys represent image identifiers and values represent pixel
arrays, provide better caching and indexing strategies to retrieve
image data such as B+tree index with LMDB and log-structured
merge tree with LevelDB. As a result, key-value systems trained
the same network on ImageNet data, with less than 6% time of the
image file option, regardless of cache condition.

As reported in many file system studies, when the number of
files are large, file system metadata operations to locate the blocks
in the file system require very large memory for the operating sys-
tem kernel [3]. As shown in Figure 12, with image file options,
the system simply cannot read the file contents as it cannot lo-
cate the files in an efficient manner. Therefore, GPU remained al-
most idle during the entire training, resulting extremely long train-
ing time on average. If we train a larger model than the trained
model in this study, it might require multiple GPUs across a cluster
of machines [7]. Then, the computation and communication over-
heads might hide inefficient file system operations to some degree,
but prior studies reported the importance of efficient data feed-
ing [5, 11]. Hence, we highly recommend the researchers to con-
sider the reduction of the total number of files to be accessed, along
with choosing systems with advanced caching and indexing mech-
anisms than regular file systems.

4. Conclusion
This study evaluated the efficiency of image storage backend op-
tions in training deep neural networks. We trained the deep neu-
ral networks using a GPU, as it is well known to significantly re-
duce the computing resource requirements. We analyzed the av-
erage training time according to image storage backends, along
with measuring the activities of major computing resources – CPU,
memory, I/O, and GPU. On top of our principled evaluation, we
observed serious inefficiency of using image files on local file sys-
tem like ext4, which can result in up to 17 times slower training
times for a large data set such as ImageNet. According to our anal-
ysis, it is the combination of the characteristics of data set and the
characteristics of data access pattern for training deep neural net-
work models. The typical data sets for training deep neural net-
work consist of numerous number of training samples, which are
accessed by a series of mini-batches across the entire training sam-
ples. Thus, as for training deep neural networks, file systems pro-
vide a poor indexing to locate files in the storage system and inap-
propriate caching mechanism (caching blocks within the same file,
instead of caching another files in the same directory.) Therefore,
we suggest image storage backends with efficient indexing capa-
bilities of training samples and advanced caching mechanisms, for
training deep neural networks.

To complete the evaluation, we might consider other scenarios:
(1) utilizing parallel file systems such as GlusterFS, Lustre, and
GPFS; (2) the cases with high resolution and spectral images with
several thousands of channels, where an individual image could

reach at Giga bytes; and (3) concurrently training multiple models
for the same data set in order to search the best hyper-parameters
to tune the model or to construct an ensemble of models so as to
boost the accuracy of prediction. We plan to perform the evalua-
tion that includes these scenarios. Finally, for training deep neural
network models, we suggest key-value based approaches to effi-
ciently retrieve the image data. If the image data exceeds the capac-
ity of local file systems, we might consider distributed key-value
storage systems such as Redis [29], and HBase [1]. However, we
need to use the caution as the size of individual pixel arrays to be
trained can be much larger than the desirable range of value sizes
for key-value storages. For instance, HBase generally recommends
less than 100MB of value size. Another direction might be to im-
prove the metadata operation of file systems as with [3].
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