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Introduction to Big Data Applications and Analytics

e Big Data has become the one of the most
important elements of business analytics

e Provides groundbreaking opportunities for
enterprise information management and
decision making

e The amount of data is exploding; companies
are capturing and digitizing more information
than ever

e The rate of information growth appears to be
exceeding Moore’s Law
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Data Generation in Internet Services and Applications

. Webpages (content, graph) — “
. Clicks (ad, page, social) n f I I c k r ye I p.;v

. Users (OpenlD, FB Connect, etc.)

. e-mails (Hotmail, Y!Mail, Gmail, etc.) ’ —_—
. Photos, Movies (Flickr, YouTube, Video, etc.) GO ( )8 [e Il !] Yo u Tu h e
. Cookies / tracking info (see Ghostery) Apps available on native ’
app store (thousands)

o Installed apps (Android market, App Store, etc.) @

1200 — ANDROID
. Location (Latitude, Loopt, Foursquared, Google Now, etc.)

g 00 [ " i
. User generated content (Wikipedia & co, etc.)
. Ads (display, text, DoubleClick, Yahoo, etc.) 800 - ffzmm i0s
. Comments (Discuss, Facebook, etc.) 600 = Blackberry

- Windows Phone
. Reviews (Yelp, Y!Local, etc.)
400 —
. Social connections (LinkedIn, Facebook, etc.)
200 —
. Purchase decisions (Netflix, Amazon, etc.) —
® Instant Messages (YIM, Skype, Gtalk, etc.) B a1 a2 aa @a|ai @z qa 4|1 @z @3 Q4| Q1 Q2 Qa 4| Q1 @2 Q3 Q4| Q1 Q2 aa
. 2008 2009 2010 2011 2012 2013

. Search terms (Google, Bing, etc.)
. News articles (BBC, NYTimes, Y!News, etc.) Number of Apps in the Apple App Store, Android Market, Blackberry,

and Windows Phone (2013)
¢ Android Market: <1200K

¢ Apple App Store: ~1000K
. Link sharing (Facebook, Delicious, Buzz, etc.) Courtesy: http://dazeinfo.com/2014/07/10/apple-inc-aapl-ios-google-inc-goog-
android-growth-mobile-ecosystem-2014/
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. Blog posts (Tumblr, Wordpress, etc.)

. Microblogs (Twitter, Jaiku, Meme, etc.)




Not Only in Internet Services - Big Data in Scientific Domains

e Scientific Data Management, Analysis, and Visualization

e Applications examples

e Data Intensive Tasks

Climate modeling
Combustion
Fusion
Astrophysics

Bioinformatics

Runs large-scale simulations on supercomputers

Dump data on parallel storage systems

Collect experimental / observational data

Move experimental / observational data to analysis sites

Visual analytics — help understand data visually
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Typical Solutions or Architectures for Big Data Analytics

http://hadoop.apache.org

: http://spark-project.org

e  Storm: http://storm-project.net

— Adistributed real-time computation system for real-time analytics, online machine learning, continuous
computation, etc.

e  S4: http://incubator.apache.org/s4

— Adistributed system for processing continuous unbounded streams of data

e  Graphlab: http://graphlab.org

—  Consists of a core C++ GraphLab APl and a collection of high-performance machine learning and data mining
toolkits built on top of the GraphLab API.

http://memcached.org
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Big Data Processing with Hadoop Components

e Major components included in this
tutorial: User Applications
— MapReduce (Batch)
— HBase (Query)
— HDFS (Storage)
— RPC (Inter-process communication)
e Underlying Hadoop Distributed File i i i
System (HDFS) used by both
MapReduce and HBase HDFS

e Model scales but high amount of Hadoop Common (RPC)
communication during intermediate
phases can be further optimized

MapReduce HBase

Hadoop Framework
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Spark Architecture Overview

e Anin-memory data-processing
framework

"'";“--.‘ Worker

— Iterative machine learning jobs

— Interactive data analytics

— Scala based Implementation

— Standalone, YARN, Mesos

e Scalable and communication intensive

— Wide dependencies between Resilient
Distributed Datasets (RDDs)

SparkContext

b=

i H . = [} Worker
— MapReduce-like shuffle operations to Master
repartition RDDs

— Sockets based communication http://spark.apache.org
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Memcached Architecture

e Distributed Caching Layer
— Allows to aggregate spare memory from multiple nodes

— General purpose

e Typically used to cache database queries, results of API calls

e Scalable model, but typical usage very network intensive
Network Based Computing Laboratory BPOE-7 (April ‘16)




Data Management and Processing on Modern Clusters

e  Substantial impact on designing and utilizing data management and processing systems in multiple tiers

— Front-end data accessing and serving (Online)
e Memcached + DB (e.g. MySQL), HBase

— Back-end data analytics (Offline)
¢ HDFS, MapReduce, Spark

Front-end Tier

I Web
Server

Data Accessing
and Serving

Back-end Tier

N
Memcached J

[ Data Analytics Apps/Jobs

)
(o) oo )
[ HDFS j
1C 1]

+ DB (MySQL)

N

N

NoSQL DB
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Open Standard InfiniBand Networking Technology

Introduced in Oct 2000

High Performance Data Transfer
— Interprocessor communication and I/O
— Low latency (<1.0 microsec), High bandwidth (up to 12.5 GigaBytes/sec -> 100Gbps), and
low CPU utilization (5-10%)
Multiple Operations
— Send/Recv
— RDMA Read/Write
— Atomic Operations (very unique)

e high performance and scalable implementations of distributed locks, semaphores, collective
communication operations

Leading to big changes in designing
— HPCclusters
— File systems
— Cloud computing systems
— Grid computing systems
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How Can HPC Clusters with High-Performance Interconnect and Storage
Architectures Benefit Big Data Applications?

Can RDMA-enabled
high-performance

Can HPC Clusters with
high-performance

Can the bottlenecks be
alleviated with new

How much

performance benefits
designs by taking e TTB I storage SVStI‘T”I‘; fe.g. can be achieved
advantage of HPC . SSD, parallel file
techn(ﬁogies? benefit Big Data through enhanced

systems) benefit Big
Data applications?

. S
processing? designs?

—

What are the mayor~

bottlenecks in current Big
Data processing

middleware (e.g. Hadoop,

Spark, and Memcached)?

How to design
benchmarks for
evaluating the

performance of Big

Data middleware on

HPC clusters?

Bring HPC and Big Data processing into a
“convergent trajectory”!
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Designing Communication and 1/0 Libraries for Big Data Systems:
Challenges

Programming Models

(Sockets) { Other Protocols? ]

Communication and 1/0 Library
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Can Big Data Processing Systems be Designed with High-
Performance Networks and Protocols?

Current Design Our Approach

Application Application

Sockets
! Verbs Interface

1/10/40/100 GigE
Network

e Sockets not designed for high-performance
— Stream semantics often mismatch for upper layers

— Zero-copy not available for non-blocking sockets
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The High-Performance Big Data (HiBD) Project

e RDMA for Apache Spark
e RDMA for Apache Hadoop 2.x (RDMA-Hadoop-2.x)

—  Plugins for Apache, Hortonworks (HDP) and Cloudera (CDH) Hadoop distributions

e RDMA for Apache Hadoop 1.x (RDMA-Hadoop) Available for InfiniBand and RoCE
e RDMA for Memcached (RDMA-Memcached)

e  OSU HiBD-Benchmarks (OHB)

— HDFS and Memcached Micro-benchmarks

e  http://hibd.cse.ohio-state.edu

e  Users Base: 166 organizations from 22 countries

e  More than 15,900 downloads from the project site

e RDMA for Apache HBase and Impala (upcoming)

o P -

ese HiBD s
High-Performance THE OHIO STATE

Big Data Laboratory UNIVERSITY
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Different Modes of RDMA for Apache Hadoop 2.x

Job RDMA-enhanced MapReduce
Scheduler - ;
Intermediate Data Dir
[ tocaldisks(ssp.ubp)  J(T tuswe )
RDMA -
enhanced
RDMA-enhanced HDFS RPC
In-memory Heterogeneous
(HHH-M) Storage (HHH)
o HHH: Heterogeneous storage devices with hybrid replication schemes are supported in this mode of operation to have better fault-tolerance as well
as performance. This mode is enabled by default in the package.
o HHH-M: A high-performance in-memory based setup has been introduced in this package that can be utilized to perform all I/O operations in-
memory and obtain as much performance benefit as possible.
o HHH-L: With parallel file systems integrated, HHH-L mode can take advantage of the Lustre available in the cluster.
o MapReduce over Lustre, with/without local disks: Besides, HDFS based solutions, this package also provides support to run MapReduce jobs on top

of Lustre alone. Here, two different modes are introduced: with local disks and without local disks.

o Running with Slurm and PBS: Supports deploying RDMA for Apache Hadoop 2.x with Slurm and PBS in different running modes (HHH, HHH-M, HHH-

L, and MapReduce over Lustre).
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Acceleration Case Studies and Performance Evaluation

e RDMA-based Designs and Performance Evaluation
— HDFS
— MapReduce

— Spark
— Memcached (Basic and Hybrid)
— HDFS + Memcached-based Burst Buffer
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Design Overview of HDFS with RDMA

A"""“Ia“”s * Design Features
— RDMA-based HDFS write
HDFS
. — RDMA-based HDFS
Others l Write replication
Java Socket Interface Java Native Interface (JNI)
v — Parallel replication support
OSU Design )
i — On-demand connection
Verbs setup
1/10/40/100 Gigk, IPolB RDMA Capatle Networks — InfiniBa nd/RoCE support
Network (1B, iWARP, RoCE ..)

e Enables high performance RDMA communication, while supporting traditional socket interface

e INI Layer bridges Java based HDFS with communication library written in native code

N.S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang, H. Subramoni, C. Murthy and D. K. Panda , High Performance RDMA-Based Design of HDFS
over InfiniBand , Supercomputing (SC), Nov 2012

N. Islam, X. Lu, W. Rahman, and D. K. Panda, SOR-HDFS: A SEDA-based Approach to Maximize Overlapping in RDMA-Enhanced HDFS, HPDC '14, June 2014
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Enhanced HDFS with In-Memory and Heterogeneous Storage

e Design Features

Applications
— Three modes
Triple-H e Default (HHH)
Data Placement Policies e In-Memory (HHH-M)

Hybrid Replication

Eviction/Promotion

e Lustre-Integrated (HHH-L)

— Policies to efficiently utilize the heterogeneous

storage devices

RAM Disk

Heterogeneous Storage

SSD

e RAM, SSD, HDD, Lustre

— Eviction/Promotion based on data usage

— Hybrid Replication

— Lustre-Integrated mode:

e Lustre-based fault-tolerance

N. Islam, X. Lu, M. W. Rahman, D. Shankar, and D. K. Panda, Triple-H: A Hybrid Approach to Accelerate HDFS on HPC Clusters
with Heterogeneous Storage Architecture, CCGrid '15, May 2015

Network Based Computing Laboratory
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Design Overview of MapReduce with RDMA

— e Design Features
pplications
J — RDMA-based shuffle

MapReduce — Prefetching and caching map output

Job Task | __Map o ,
° = % — Efficient Shuffle Algorithms
Tracker Tracker Reduce

7< — In-memory merge

Java Socket Interface Java Native Interface (JNI) — On-demand Shuffle Adjustment
' — Advanced overlapping
* e map, shuffle, and merge
Verbs e shuffle, merge, and reduce
RDMA Capa\t[)/le Networks — On-demand connection setup

(1B, iWARP, RoCE ..) -
= . - — InfiniBand/RoCE support

e Enables high performance RDMA communication, while supporting traditional socket interface

e INI Layer bridges Java based MapReduce with communication library written in native code

M. W. Rahman, X. Lu, N. S. Islam, and D. K. Panda, HOMR: A Hybrid Approach to Exploit Maximum Overlapping in

MapReduce over High Performance Interconnects, ICS, June 2014
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Performance Benefits — RandomWriter & TeraGen in TACC-Stampede

250 250
Reduced by 3x
= IPoIB (FDR) v = IPoIB (FDR) Reduced by 4x
= 200 = 200
o o
£ £
i= 150 -+ i= 150 -
s c
:g 100 +—— .g 100 +——
3 5
o (6]
g 50 - SEEEEE— . # § s0 |
w (V]
; H Tl Ca m | mm
80 100 120 80 100 120
Data Size (GB) Data Size (GB)
RandomWriter TeraGen

Cluster with 32 Nodes with a total of 128 maps

e RandomWriter e TeraGen
— 3-4x improvement over IPolB — 4-5x improvement over IPolB
for 80-120 GB file size for 80-120 GB file size
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Performance Benefits — Sort & TeraSort in TACC-Stampede

IPolB (FDR) m OSU-IB (FDR) 000 IPolIB (FDR) m OSU-IB (FDR)

Reduced by 44%

(O]
o
o

l

Execution Time (s)
w
o
o

400

o
o

| 200 +—— ]
. 1 | | F
T T 1 0 T T 1
80 100 120 80 100 120

Data Size (GB) Data Size (GB)
Cluster with 32 Nodes with a total of Cluster with 32 Nodes with a total of
128 maps and 57 reduces 128 maps and 64 reduces

Sort with single HDD per node e TeraSort with single HDD per node

— 40-52% improvement over IPolB — 42-44% improvement over |PolB
for 80-120 GB data for 80-120 GB data
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Evaluation of HHH and HHH-L with Applications

1000 M HDFS m®Llustre M HHH-L Reduced by 79%

5 g, B HDFS (FDR) HHH (FDR)
E 600 [
é 400 - |
S 60.24 s 48.3 s
X 200
0
Concurrent rgaps per host
MR-MSPolyGraph CloudBurst
e MR-MSPolygraph on OSU Rl with e CloudBurst on TACC Stampede
1,000 maps — With HHH: 19% improvement over
— HHH-L reduces the execution time HDFS

by 79% over Lustre, 30% over HDFS
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Evaluation with Spark on SDSC Gordon (HHH vs. Tachyon/Alluxio)

180 -+ 700
= IPo B Tachyon W - Reduced by 25.2%
. 160 duced_ ¢4
(7] (7]
<L 140 - - by 2.4x <
(] @ 500
£ 120 - S— =
= 100 - F 400 -
c c
QO 80 - .2 300 -
5 60 - 5
8 8 200 -
52 &
20 - 100 -
0 - 0 -
8:50 16:100 32:200 8:50 16:100 32:200
Cluster Size : Data Size (GB) Cluster Size : Data Size (GB)
TeraGen TeraSort

e  For 200GB TeraGen on 32 nodes
— Spark-TeraGen: HHH has 2.4x improvement over Tachyon; 2.3x over HDFS-IPolB (QDR)
— Spark-TeraSort: HHH has 25.2% improvement over Tachyon; 17% over HDFS-IPolB (QDR)

N. Islam, M. W. Rahman, X. Lu, D. Shankar, and D. K. Panda, Performance Characterization and Acceleration of In-Memory File
Systems for Hadoop and Spark Applications on HPC Clusters, IEEE BigData '15, October 2015
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Design Overview of Shuffle Strategies for MapReduce over Lustre

e Design Features

Map 1 | Map 2 Map 3 — Two shuffle approaches

_ _ _ e Lustre read based shuffle
v v \ e RDMA based shuffle

Intermediate Data Directory — Hybrid shuffle algorithm to take benefit

P — : from both shuffle approaches
i =3 u

— Dynamically adapts to the better

Lustre shuffle approach for each shuffle
¢ ¢ request based on profiling values for
Lustre Read / RDMA each Lustre read operation
Reduce 1 Reduce 2 — In-memory merge and overlapping of
In-memory reduce In-memory reduce different phases are kept similar to
merge/sort merge/sort RDMA-enhanced MapReduce design

M. W. Rahman, X. Lu, N. S. Islam, R. Rajachandrasekar, and D. K. Panda, High Performance Design of YARN
MapReduce on Modern HPC Clusters with Lustre and RDMA, IPDPS, May 2015
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Performance Improvement of MapReduce over Lustre on TACC-

Stampede

e Local disk is used as the intermediate data directory

1200 Reduced by 44%

IPoIB (FDR)
m OSU-IB (FDR)

[any
o
o
o

800

600

400

i r F
O T T
300 400 500

Data Size (GB)

Job Execution Time (sec)

e For 500GB Sort in 64 nodes
— 44% improvement over IPolB (FDR)

Job Execution Time (sec)

500
450

D
o
o

350 A
300 -
250 A
200 ~
150 -
100 -
50 A

0 -

IPolB (FDR) m OSU-IB (FDR) Reduced by 48%

Cluster: 4 ‘ Cluster: 8 ‘ Cluster: 16 ‘ Cluster: 32 ‘ Cluster: 64 ‘Cluster: 128‘

e For 640GB Sort in 128 nodes
— 48% improvement over IPolB (FDR)

M. W. Rahman, X. Lu, N. S. Islam, R. Rajachandrasekar, and D. K. Panda, MapReduce over Lustre: Can RDMA-
based Approach Benefit?, Euro-Par, August 2014.
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Case Study - Performance Improvement of MapReduce over

Lustre on SDSC-Gordon
e Lustre is used as the intermediate data directory

900
> | F1PolB (QDR) Reduced by 34% o Reduced by 25%
53 o m OSU-Lustre-Read (QDR) 5
o 1oy | " OSU-RDMA-IB (QDR) E Zzz ,
E 500 M OSU-Hybrid-IB (QDR) i 500
0 =
= 400 g 400
@ 300 @ 300
x x
5 200 3 200
o (=}
= 100 = 100
0 - 0 -
40 60 80 40 80 120
Data Size (GB) Data Size (GB)
e For 80GB Sort in 8 nodes e For 120GB TeraSort in 16 nodes
— 34% improvement over IPolB (QDR) — 25% improvement over IPolB (QDR)
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Acceleration Case Studies and Performance Evaluation

e RDMA-based Designs and Performance Evaluation

— Spark
— Memcached (Basic and Hybrid)
— HDFS + Memcached-based Burst Buffer

Network Based Computing Laboratory BPOE-7 (April ‘16)



Design Overview of Spark with RDMA

Spark Applications ° Design Features
(Scala/Java/Python)
J Task Task Task Task - RDMA based Sthﬂe
Spark —_ - i
S s SEDA-based plugins
BlockManager BlockFetcherlterator - Dynamic connection
S I EE management and sharing
Server Server Server Fetcher Fetcher Fetcher
(default) (optional) (plug-in) (default) (optional) (plug-in) _ Non_blocking data transfer

A ae—— 00— oK

RDMA-based Shuffle Engine

— Off-JVM-heap buffer

Java Socket

(Java/JNI) management
v v ..
1/10 Gig Ethernet/IPolB (QDR/FDR) Native InfiniBand - InflnlBand/ROCE SUpport
Network (QDR/FDR)

e Enables high performance RDMA communication, while supporting traditional socket interface

e JNI Layer bridges Scala based Spark with communication library written in native code

X. Lu, M. W. Rahman, N. Islam, D. Shankar, and D. K. Panda, Accelerating Spark with RDMA for Big Data Processing: Early
Experiences, Int'l Symposium on High Performance Interconnects (Hotl'14), August 2014
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Performance Evaluation on SDSC Comet — SortBy/GroupBy

250 300
IPolB 80% IPolB 57%
200 250
= B RDMA = B RDMA
(4] @200
»150 )
£ 2150
2100 =
100
50 +—— 50 +—— F
O | T T 1 O T T
64 128 256 64 128 256
Data Size (GB) Data Size (GB)
64 Worker Nodes, 1536 cores, SortByTest Total Time 64 Worker Nodes, 1536 cores, GroupByTest Total Time

e InfiniBand FDR, SSD, 64 Worker Nodes, 1536 Cores, (1536M 1536R)
e RDMA-based design for Spark 1.5.1

e RDMA vs. IPoIB with 1536 concurrent tasks, single SSD per node.
— SortBy: Total time reduced by up to 80% over IPolB (56Gbps)
— GroupBy: Total time reduced by up to 57% over IPoIB (56Gbps)
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Performance Evaluation on SDSC Comet — HiBench Sort/TeraSort

600 450
IPolB 38% 400 IPolB 15%

500
) B RDMA 350 " WRDMA
9400 300
9 )
()] 250
£ .gzoo
= =

200 150

50
O | T T 1 O T T
64 128 256 64 128 256
Data Size (GB) Data Size (GB)
64 Worker Nodes, 1536 cores, Sort Total Time 64 Worker Nodes, 1536 cores, TeraSort Total Time

e InfiniBand FDR, SSD, 64 Worker Nodes, 1536 Cores, (1536M 1536R)
e RDMA-based design for Spark 1.5.1

e RDMA vs. IPoIB with 1536 concurrent tasks, single SSD per node.
— Sort: Total time reduced by 38% over |IPolB (56Gbps)

— TeraSort: Total time reduced by 15% over IPolB (56Gbps)
Network Based Computing Laboratory BPOE-7 (April ‘16)




Performance Evaluation on SDSC Comet — HiBench PageRank

800

37%
200 IPolB 0
=00 —m@RDMA—

(S}
3500

[4)
.§400
F300

200

100 F

o . N
Huge BigData Gigantic
Data Size (GB)

32 Worker Nodes, 768 cores, PageRank Total Time

450
400

_350

9300
(7]

250
£200
-

150
100

50 +——

0

IPolB 43%
B RDMA
Huge Data Gigantic

Data ize (GB)

64 Worker Nodes, 1536 cores, PageRank Total Time

e InfiniBand FDR, SSD, 32/64 Worker Nodes, 768/1536 Cores, (768/1536M 768/1536R)
e RDMA-based design for Spark 1.5.1

e RDMA vs. IPolB with 768/1536 concurrent tasks, single SSD per node.
— 32 nodes/768 cores: Total time reduced by 37% over IPolB (56Gbps)
— 64 nodes/1536 cores: Total time reduced by 43% over IPolIB (56Gbps)
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Acceleration Case Studies and Performance Evaluation

e RDMA-based Designs and Performance Evaluation

— Memcached (Basic and Hybrid)
— HDFS + Memcached-based Burst Buffer

Network Based Computing Laboratory BPOE-7 (April ‘16)



RDMA-Memcached Performance (FDR Interconnect)

Memcached GET Latency Memcached Throughput
1000 700
«=#=0SU-IB (FDR) u
%-1PoIB (FDR) g 600
T 100 e el 8 w500 -
s oy pay oy pay ey pay pay  mas e pam v O
Q C 2X
S Latency Reduced F €300 -
= 10 I by nearly 20X ——t S 3
w o 200 - —
T 0n
1 é g 100 -
A N S 0 O N S 0O N ¥ ¥ ¥3 0 -
= MM O N N d A N < &
— &N (== 16 32 64 128 256 512 1024 2048 4080

Message Size No. of Clients
Experiments on TACC Stampede (Intel SandyBridge Cluster, IB: FDR)

e Memcached Get latency
— 4 bytes OSU-IB: 2.84 us; IPolB: 75.53 us
— 2K bytes OSU-IB: 4.49 us; IPolB: 123.42 us
e  Memcached Throughput (4bytes)
— 4080 clients OSU-IB: 556 Kops/sec, IPolB: 233 Kops/s
— Nearly 2X improvement in throughput
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Micro-benchmark Evaluation for OLDP workloads

B Memcached-IPolB (32Gbps) 66% =¢=\emcached-IPolB (32Gbps)
273 T " I Memcached-RDMA (32Gbps) B ,; 4000 “=Memcached-RDMA (32Gbps)
|~
=6 S 3000 9 —
25 - -—
S 4 3 2000 W
c L
o 3 o0
- =
82 © 1000 M
] j =
O - 0 T T T T T
64 96 128 160 320 400 64 96 128 160 320 400
No. of Clients No. of Clients
e lllustration with Read-Cache-Read access pattern using modified mysqlslap load testing

tool

e Memcached-RDMA can
- improve query latency by up to 66% over IPolB (32Gbps)

- throughput by up to 69% over IPolIB (32Gbps)
D. Shankar, X. Lu, J. Jose, M. W. Rahman, N. Islam, and D. K. Panda, Can RDMA Benefit On-Line Data Processing Workloads

with Memcached and MySQL, ISPASS’15
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Performance Benefits of Hybrid Memcached (Memory + SSD) on
SDSC-Gordon

500 - 2 10 M [PolB (32Gbps) %

y e B RDMA-Mem (32Gbps)
3400 - g 8- :
> put B RDMA-Hybrid (32Gbps)
$ 300 - 2 6 -
K £
w 200 - = 4
J 2
9 100 - < i
z 2 2

0 - |'§ 0o -

L S T TP - PN - RPN SN SN ' B
N © .{'o ‘\0’\' @0) b.,,% 6;”0’ ,\:\?‘ 64 128 256 512 1024
R\ No. of Clients

Message Size (Bytes)

e ohb_memlat & ohb_memthr latency & throughput micro-benchmarks

e Memcached-RDMA can
- improve query latency by up to 70% over IPolB (32Gbps)
- improve throughput by up to 2X over IPoIB (32Gbps)

- No overhead in using hybrid mode when all data can fit in memory
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Performance Evaluation on IB FDR + SATA/NVMe SSDs

2500

2000

1500

Latency (us)

1000

500

Network Based Computing Laboratory

M slab allocation (SSD write) ~ B cache check+load (SSD read) M cache

update M server response M client wait M miss-penalty

Set

Get Set Get Set Get Set Get

IPoIB-Mem RDMA-Mem RDMA-Hybrid-SATA| RDMA-Hybrid-

NVMe

Set Set Set Get

IPoIB-Mem RDMA-Mem RDMA-Hybrid-SATA| RDMA-Hybrid-

NVMe

Data Fits In Memory

Data Does Not Fit In Memory

Memcached latency test with Zipf distribution, server with 1 GB memory, 32 KB key-value pair size, total
size of data accessed is 1 GB (when data fits in memory) and 1.5 GB (when data does not fit in memory)

When data fits in memory: RDMA-Mem/Hybrid give

s 5x improvement over |IPolB-Mem

When data does not fit in memory: RDMA-Hybrid gives 2x-2.5x over IPolB/RDMA-Mem
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Acceleration Case Studies and Performance Evaluation

e RDMA-based Designs and Performance Evaluation

— HDFS + Memcached-based Burst Buffer
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Accelerating 1/0 Performance of Big Data Analytics
through RDMA-based Key-Value Store

e Design Features

gl — Memcached-based burst-buffer

system

Map/Reduce Task DataNode

1/0 Forwarding Module @

Fault-tolerance

e Hides latency of parallel file

system access

e Read from local storage and

Memcached

Data locality achieved by writing data
Different approaches of integration
° with parallel file system to guarantee
fault-tolerance
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Evaluation with PUMA Workloads

4500 40% M HDFS (32Gbps)

_ 4000 - M Lustre (32Gbps)

= 3500 - Mem-bb (32Gbps)

Sc.’ 3000 -

= 2500 -

[

S 2000 -

§ 1500 - 48.3%

500 -
"
0 - w ‘
SeqCount RankedInvindex HistoRating
. - Workloads

Gains on OSU RI with our approach (Mem-bb) on 24 nodes
e SequenceCount: 34.5% over Lustre, 40% over HDFS M- S, Islam, D. Shanicar, X. Lu, M.

W. Rahman, and D. K. Panda,
Accelerating 1/0 Performance of

e RankedInvertedindex: 27.3% over Lustre, 48.3% over HDFS gig pata analytics with RoMA-
based Key-Value Store, ICPP
e HistogramRating: 17% over Lustre, 7% over HDFS ’15, September 2015
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On-going and Future Plans of OSU High Performance Big Data
(HiBD) Project
e Upcoming Releases of RDMA-enhanced Packages will support

— HBase

— Impala

e Upcoming Releases of OSU HiBD Micro-Benchmarks (OHB) will support
— MapReduce
— RPC

e Advanced designs with upper-level changes and optimizations

— Memcached with Non-blocking API
— HDFS + Memcached-based Burst Buffer
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Concluding Remarks

e Discussed challenges in accelerating Hadoop, Spark and Memcached

e Presented initial designs to take advantage of HPC technologies to accelerate

HDFS, MapReduce, RPC, Spark, and Memcached
e Results are promising
e Many other open issues need to be solved

e Will enable Big Data community to take advantage of modern HPC

technologies to carry out their analytics in a fast and scalable manner
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Second International Workshop on
High-Performance Big Data Computing (HPBDC)

HPBDC 2016 will be held with IEEE International Parallel and Distributed Processing

Symposium (IPDPS 2016), Chicago, lllinois USA, May 27th, 2016

Keynote Talk: Dr. Chaitanya Baru,
Senior Advisor for Data Science, National Science Foundation (NSF);
Distinguished Scientist, San Diego Supercomputer Center (SDSC)

Panel Moderator: Jianfeng Zhan (ICT/CAS)
Panel Topic: Merge or Split: Mutual Influence between Big Data and HPC Techniques

Six Regular Research Papers and Two Short Research Papers

http://web.cse.ohio-state.edu/~luxi/hpbdc2016

HPBDC 2015 was held in conjunction with ICDCS’15

http://web.cse.ohio-state.edu/~luxi/hpbdc2015
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